Page 45 - IJB-9-3
P. 45
International Journal of Bioprinting Comparison of different 3D printing technologies
re-epithelization for corneal epithelial-stromal regeneration. of cultural heritage, from the Chillida-leku museum to
Appl Mater Today, 24:101119. the archaeological museum of Sarno. in The International
https://doi.org/10.1016/J.APMT.2021.101119 Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 1–8.
17. Bodenberger N, Kubiczek D, Rosenau F, 2017, Easy
manipulation of architectures in protein-based hydrogels https://doi.org/10.5194/isprs-archives-XLII-
for cell culture applications. J Vis Exp, 2017(126):55813. 2-W18-135-2019
https://doi.org/10.3791/55813 27. Kiyotake EA, Douglas AW, Thomas EE, et al., 2019,
Development and quantitative characterization of the
18. Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015, precursor rheology of hyaluronic acid hydrogels for
Synthesis, properties, and biomedical applications of gelatin bioprinting. Acta Biomater, 95:176–187.
methacryloyl (GelMA) hydrogels. Biomaterials, 73:254–271.
https://doi.org/10.1016/J.ACTBIO.2019.01.041
https://doi.org/10.1016/J.BIOMATERIALS.2015.08.045
28. Mancha E, Gómez JC, López E, et al., 2020, “Hydrogels for
19. Hafezi F, Shorter S, Ghanizadeh A, et al., 2020, Bioprinting
and preliminary testing of highly reproducible novel bioink bioprinting: A systematic review of hydrogels synthesis,
for potential skin regeneration. Pharmaceutics, 12(6):550. bioprinting parameters, and bioprinted structures behavior.
Front Bioeng Biotechnol, 8:776.
https://doi.org/10.3390/PHARMACEUTICS12060550 https://doi.org/10.3389/FBIOE.2020.00776/BIBTEX
20. Ma K, Zhao T, Yang L, et al., 2020, Application of robotic- 29. Matamoros M, Gómez JC, Sánchez AJ, et al., 2020,
assisted in situ 3D printing in cartilage regeneration with Temperature and humidity PID controller for a bioprinter
HAMA hydrogel: An in vivo study. J Adv Res, 23:123–132. atmospheric enclosure system. Micromachines, 11(11):999.
https://doi.org/10.1016/J.JARE.2020.01.010 https://doi.org/10.3390/MI11110999
21. Borkar T, Goenka V, Jaiswal AK, 2021, Application of poly- 30. Esquivel M, 2021, Lopretti M, Roberto Vega-Baudrit J,
ε-caprolactone in extrusion-based bioprinting. Bioprinting, Hidrogeles híbridos de quitosano y polietilenglicol (QUIT:PEG)
21:e00111. para potenciales aplicaciones biomédicas. [Online]. Available.
https://doi.org/10.1016/J.BPRINT.2020.E00111 https://www.researchgate.net/publication/351765144
22. Danielson KG, Martinez-Hernandez A, Hassell JR, et al., 31. Barrido DE, Caracterización superficial de aleaciones para
1992, Establishment of a cell line from the EHS tumor: implantes mediante técnicas espectroscópicas y microscopía
Biosynthesis of basement membrane constituents and electrónica de barrido.
characterization of a hybrid proteoglycan containing
heparan and chondroitin sulfate chains. Matrix, 12(1): 32. Mehdizadeh M, Kumar H, Mohamed MGA, et al., 2021,
22–35. Polyether ether ketone surface modification with plasma
and gelatin for enhancing cell attachment. J Biomed Mater
https://doi.org/10.1016/S0934-8832(11)80101-0 Res B Appl Biomater, 109(5):622–629.
23. Passaniti A, Kleinman HK, Martin GR, 2021, Matrigel: https://doi.org/10.1002/JBM.B.34726
History/background, uses, and future applications. J Cell
Commun Signal, 1–6. 33. Nacional De Córdoba U, Integrador P, Morello A, et al.,
Facultad de Ciencias Exactas Físicas y Naturales MATERIAL
https://doi.org/10.1007/S12079-021-00643-1/FIGURES/4 DE BIOIMPRESIÓN 3D.
24. Kiran MS, Karanam HKR, Prabu SS, 2022, Experimental 34. Kyle S, Jessop ZM, Al-Sabah A, et al., 2017, “Printability”
and thermal analysis of desktop FDM 3D printers ‘Ender 3’ of candidate biomaterials for extrusion based 3D printing:
and ‘CR-10S Pro’ hot ends. ECS Trans, 107(1):12851–12862. State-of-the-art. Adv Healthc Mater, 6(16):1700264.
https://doi.org/10.1149/10701.12851ECST/XML https://doi.org/10.1002/ADHM.201700264
25. Patel DK, Dutta SD, Shin WC, et al., 2021, Fabrication 35. Habib MA, Khoda B, 2018, Development of clay based
and characterization of 3D printable nanocellulose- novel bio-ink for 3D bio-printing process. Procedia Manuf,
based hydrogels for tissue engineering. RSC Adv, 11(13): 26:846–856.
7466–7478. https://doi.org/10.1016/J.PROMFG.2018.07.105
https://doi.org/10.1039/D0RA09620B 36. Silva Beltrá E, 2019, Obtención y caracterización de un
26. Morena S, Barba S, Álvaro-Tordesillas A, 2019, SHINING material compuesto de PCL/MWCNT/nHA por impresión
3D Einscan-pro, application and validation in the field 3D. Instituto Tecnológico de Zacatepec, Zacatepec, Morelos.
Volume 9 Issue 3 (2023) 37 https://doi.org/10.18063/ijb.680

