Page 45 - IJB-9-3
P. 45

International Journal of Bioprinting                           Comparison of different 3D printing technologies



               re-epithelization for corneal epithelial-stromal regeneration.   of cultural heritage, from the Chillida-leku museum to
               Appl Mater Today, 24:101119.                       the archaeological museum of Sarno. in The International
               https://doi.org/10.1016/J.APMT.2021.101119         Archives of the Photogrammetry, Remote Sensing and Spatial
                                                                  Information Sciences, 1–8.
            17.  Bodenberger N, Kubiczek D, Rosenau F, 2017, Easy
               manipulation of architectures in protein-based hydrogels   https://doi.org/10.5194/isprs-archives-XLII-
               for cell culture applications. J Vis Exp, 2017(126):55813.  2-W18-135-2019
               https://doi.org/10.3791/55813                   27.  Kiyotake EA, Douglas AW, Thomas EE,  et al., 2019,
                                                                  Development and quantitative characterization of the
            18.  Yue K, Trujillo-de Santiago G, Alvarez MM,  et al., 2015,   precursor rheology of hyaluronic acid hydrogels for
               Synthesis, properties, and biomedical applications of gelatin   bioprinting. Acta Biomater, 95:176–187.
               methacryloyl (GelMA) hydrogels. Biomaterials, 73:254–271.
                                                                  https://doi.org/10.1016/J.ACTBIO.2019.01.041
               https://doi.org/10.1016/J.BIOMATERIALS.2015.08.045
                                                               28.  Mancha E, Gómez JC, López E, et al., 2020, “Hydrogels for
            19.  Hafezi F, Shorter S, Ghanizadeh A, et al., 2020, Bioprinting
               and preliminary testing of highly reproducible novel bioink   bioprinting: A systematic review of hydrogels synthesis,
               for potential skin regeneration. Pharmaceutics, 12(6):550.   bioprinting parameters, and bioprinted structures behavior.
                                                                  Front Bioeng Biotechnol, 8:776.
               https://doi.org/10.3390/PHARMACEUTICS12060550      https://doi.org/10.3389/FBIOE.2020.00776/BIBTEX
            20.  Ma K, Zhao T, Yang L, et al., 2020, Application of robotic-  29.  Matamoros M, Gómez JC, Sánchez AJ,  et al., 2020,
               assisted in situ 3D printing in cartilage regeneration with   Temperature and humidity PID controller for a bioprinter
               HAMA hydrogel: An in vivo study. J Adv Res, 23:123–132.  atmospheric enclosure system. Micromachines, 11(11):999.
               https://doi.org/10.1016/J.JARE.2020.01.010         https://doi.org/10.3390/MI11110999
            21.  Borkar T, Goenka V, Jaiswal AK, 2021, Application of poly-  30.  Esquivel M, 2021, Lopretti M, Roberto Vega-Baudrit J,
               ε-caprolactone in extrusion-based bioprinting. Bioprinting,   Hidrogeles híbridos de quitosano y polietilenglicol (QUIT:PEG)
               21:e00111.                                         para potenciales aplicaciones biomédicas. [Online]. Available.

               https://doi.org/10.1016/J.BPRINT.2020.E00111       https://www.researchgate.net/publication/351765144
            22.  Danielson KG, Martinez-Hernandez A, Hassell JR,  et al.,   31.  Barrido DE, Caracterización superficial de aleaciones para
               1992, Establishment of a cell line from the EHS tumor:   implantes mediante técnicas espectroscópicas y microscopía
               Biosynthesis of basement membrane constituents and   electrónica de barrido.
               characterization of a hybrid proteoglycan containing
               heparan and chondroitin sulfate chains.  Matrix, 12(1):   32.  Mehdizadeh M, Kumar H, Mohamed MGA,  et al., 2021,
               22–35.                                             Polyether ether ketone surface modification with plasma
                                                                  and gelatin for enhancing cell attachment. J Biomed Mater
               https://doi.org/10.1016/S0934-8832(11)80101-0      Res B Appl Biomater, 109(5):622–629.
            23.  Passaniti A, Kleinman HK, Martin GR, 2021, Matrigel:   https://doi.org/10.1002/JBM.B.34726
               History/background, uses, and future applications.  J Cell
               Commun Signal, 1–6.                             33.  Nacional De Córdoba U, Integrador P, Morello A,  et al.,
                                                                  Facultad de Ciencias Exactas Físicas y Naturales MATERIAL
               https://doi.org/10.1007/S12079-021-00643-1/FIGURES/4  DE BIOIMPRESIÓN 3D.
            24.  Kiran MS, Karanam HKR, Prabu SS, 2022, Experimental   34.  Kyle S, Jessop ZM, Al-Sabah A, et al., 2017, “Printability”
               and thermal analysis of desktop FDM 3D printers ‘Ender 3’   of candidate biomaterials for extrusion based 3D printing:
               and ‘CR-10S Pro’ hot ends. ECS Trans, 107(1):12851–12862.  State-of-the-art. Adv Healthc Mater, 6(16):1700264.
               https://doi.org/10.1149/10701.12851ECST/XML        https://doi.org/10.1002/ADHM.201700264
            25.  Patel DK, Dutta SD, Shin WC,  et al., 2021, Fabrication   35.  Habib MA, Khoda B, 2018, Development of clay based
               and characterization of 3D printable nanocellulose-  novel bio-ink for 3D bio-printing process. Procedia Manuf,
               based hydrogels  for tissue  engineering. RSC Adv, 11(13):   26:846–856.
               7466–7478.                                         https://doi.org/10.1016/J.PROMFG.2018.07.105
               https://doi.org/10.1039/D0RA09620B              36.  Silva  Beltrá  E,  2019,  Obtención y caracterización de un
            26.  Morena S, Barba S, Álvaro-Tordesillas A, 2019, SHINING   material compuesto de PCL/MWCNT/nHA por impresión
               3D Einscan-pro, application and validation in the field   3D. Instituto Tecnológico de Zacatepec, Zacatepec, Morelos.






            Volume 9 Issue 3 (2023)                         37                         https://doi.org/10.18063/ijb.680
   40   41   42   43   44   45   46   47   48   49   50