Page 71 - IJB-9-3
P. 71

International Journal of Bioprinting                    Peritoneal scaffolds for the peritoneal adhesion prevention



            15.  Mutsaers SE, Prêle CM, Pengelly S, et al., 2016, Mesothelial cells   24.  Ito T, Shintani Y, Fields L, et al., 2021, Cell barrier function
               and peritoneal homeostasis. Fertil Steril, 106(5):1018–1024.  of resident peritoneal macrophages in post-operative
                                                                  adhesions. Nat Commun, 12(1):2232.
               https://doi.org/10.1016/j.fertnstert.2016.09.005
            16.  Koffler J, Zhu W, Qu X, et al., 2019, Biomimetic 3D-printed   https://doi.org/10.1038/s41467-021-22536-y
               scaffolds for spinal cord injury repair. Nat Med, 25(2):263–269.  25.  Tsai JM, Sinha R, Seita J, et al., 2018, Surgical adhesions in
               https://doi.org/10.1038/s41591-018-0296-z          mice are derived from mesothelial cells and can be targeted
                                                                  by antibodies against mesothelial markers. Sci Transl Med,
            17.  Kim BS, Kwon YW, Kong JS, et al., 2018, 3D cell printing of in   10(469):n6735.
               vitro stabilized skin model and in vivo pre-vascularized skin
               patch using tissue-specific extracellular matrix bioink: A   https://doi.org/10.1126/scitranslmed.aan6735
               step towards advanced skin tissue engineering. Biomaterials,   26.  Zindel J, Peiseler M, Hossain M,  et al., 2021, Primordial
               168:38–53.
                                                                  GATA6 macrophages function as extravascular platelets in
               https://doi.org/10.1016/j.biomaterials.2018.03.040  sterile injury. Science, 371(6533):e595.
            18.  Murphy SV, De Coppi P, Atala A, 2020, Opportunities and   https://doi.org/10.1126/science.abe0595
               challenges of translational 3D bioprinting. Nat Biomed Eng,
               4(4):370–380.                                   27.  Zhang W, Wang X, Ma J, et al., 2022, Adaptive injectable
                                                                  carboxymethyl cellulose/poly (gamma-glutamic acid)
               https://doi.org/10.1038/s41551-019-0471-7          hydrogels promote wound healing.  Biomater Adv,
            19.  Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting for   136:212753.
               engineering complex tissues. Biotechnol Adv, 34(4):422–434.  https://doi.org/10.1016/j.bioadv.2022.212753
               https://doi.org/10.1016/j.biotechadv.2015.12.011
                                                               28.  Xie C, Gao Q, Wang P, et al., 2019, Structure-induced cell
            20.  Ye W, Xie C, Liu Y, et al., 2021, 3D printed high-resolution   growth by 3D printing of heterogeneous scaffolds with
               scaffold  with  hydrogel  microfibers  for  providing  excellent   ultrafine fibers. Mater Design, 181:108092.
               biocompatibility. J Biomater Appl, 35(6):633–642.
                                                                  https://doi.org/10.1016/j.matdes.2019.108092
               https://doi.org/10.1177/0885328220962606
                                                               29.  Laronda MM, Rutz AL, Xiao S, et al., 2017, A bioprosthetic
            21.  Tylek T, Blum C, Hrynevich A, et al., 2020, Precisely defined   ovary created using 3D printed microporous scaffolds restores
               fiber scaffolds with 40 μm porosity induce elongation driven   ovarian function in sterilized mice. Nat Commun, 8(1):15261.
               M2-like polarization of human macrophages. Biofabrication,
               12(2):25007.                                       https://doi.org/10.1038/ncomms15261
               https://doi.org/10.1088/1758-5090/ab5f4e        30.  Liang W, He W, Huang R, et al., 2022, Peritoneum‐inspired
                                                                  Janus porous hydrogel with anti‐deformation, anti‐adhesion,
            22.  Huang J, Liu Y, Chi X, et al., 2021, Programming electronic   and pro‐healing characteristics for abdominal wall defect
               skin with diverse  skin-like  properties.  J Mater Chem A,   treatment. Adv Mater, 34(15):2108992.
               9(2):963–973.
                                                                  https://doi.org/10.1002/adma.202108992
               https://doi.org/10.1039/D0TA09101D
            23.  Huang J, Jiang Y, Liu Y,  et al., 2021, Marine-inspired   31.  Li Y, Lv S, Yuan H, et al., 2021, Peripheral nerve regeneration
               molecular mimicry generates a drug-free, but immunogenic   with 3D printed bionic scaffolds loading neural crest stem
               hydrogel adhesive protecting surgical anastomosis.  Bioact   cell derived Schwann cell progenitors.  Adv Funct Mater,
               Mater, 6(3):770–782.                               31(16):2010215.
               https://doi.org/10.1016/j.bioactmat.2020.09.010    https://doi.org/https://doi.org/10.1002/adfm.202010215



















            Volume 9 Issue 3 (2023)                         63                          https://doi.org/10.18063/ijb.682
   66   67   68   69   70   71   72   73   74   75   76