Page 71 - IJB-9-3
P. 71
International Journal of Bioprinting Peritoneal scaffolds for the peritoneal adhesion prevention
15. Mutsaers SE, Prêle CM, Pengelly S, et al., 2016, Mesothelial cells 24. Ito T, Shintani Y, Fields L, et al., 2021, Cell barrier function
and peritoneal homeostasis. Fertil Steril, 106(5):1018–1024. of resident peritoneal macrophages in post-operative
adhesions. Nat Commun, 12(1):2232.
https://doi.org/10.1016/j.fertnstert.2016.09.005
16. Koffler J, Zhu W, Qu X, et al., 2019, Biomimetic 3D-printed https://doi.org/10.1038/s41467-021-22536-y
scaffolds for spinal cord injury repair. Nat Med, 25(2):263–269. 25. Tsai JM, Sinha R, Seita J, et al., 2018, Surgical adhesions in
https://doi.org/10.1038/s41591-018-0296-z mice are derived from mesothelial cells and can be targeted
by antibodies against mesothelial markers. Sci Transl Med,
17. Kim BS, Kwon YW, Kong JS, et al., 2018, 3D cell printing of in 10(469):n6735.
vitro stabilized skin model and in vivo pre-vascularized skin
patch using tissue-specific extracellular matrix bioink: A https://doi.org/10.1126/scitranslmed.aan6735
step towards advanced skin tissue engineering. Biomaterials, 26. Zindel J, Peiseler M, Hossain M, et al., 2021, Primordial
168:38–53.
GATA6 macrophages function as extravascular platelets in
https://doi.org/10.1016/j.biomaterials.2018.03.040 sterile injury. Science, 371(6533):e595.
18. Murphy SV, De Coppi P, Atala A, 2020, Opportunities and https://doi.org/10.1126/science.abe0595
challenges of translational 3D bioprinting. Nat Biomed Eng,
4(4):370–380. 27. Zhang W, Wang X, Ma J, et al., 2022, Adaptive injectable
carboxymethyl cellulose/poly (gamma-glutamic acid)
https://doi.org/10.1038/s41551-019-0471-7 hydrogels promote wound healing. Biomater Adv,
19. Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting for 136:212753.
engineering complex tissues. Biotechnol Adv, 34(4):422–434. https://doi.org/10.1016/j.bioadv.2022.212753
https://doi.org/10.1016/j.biotechadv.2015.12.011
28. Xie C, Gao Q, Wang P, et al., 2019, Structure-induced cell
20. Ye W, Xie C, Liu Y, et al., 2021, 3D printed high-resolution growth by 3D printing of heterogeneous scaffolds with
scaffold with hydrogel microfibers for providing excellent ultrafine fibers. Mater Design, 181:108092.
biocompatibility. J Biomater Appl, 35(6):633–642.
https://doi.org/10.1016/j.matdes.2019.108092
https://doi.org/10.1177/0885328220962606
29. Laronda MM, Rutz AL, Xiao S, et al., 2017, A bioprosthetic
21. Tylek T, Blum C, Hrynevich A, et al., 2020, Precisely defined ovary created using 3D printed microporous scaffolds restores
fiber scaffolds with 40 μm porosity induce elongation driven ovarian function in sterilized mice. Nat Commun, 8(1):15261.
M2-like polarization of human macrophages. Biofabrication,
12(2):25007. https://doi.org/10.1038/ncomms15261
https://doi.org/10.1088/1758-5090/ab5f4e 30. Liang W, He W, Huang R, et al., 2022, Peritoneum‐inspired
Janus porous hydrogel with anti‐deformation, anti‐adhesion,
22. Huang J, Liu Y, Chi X, et al., 2021, Programming electronic and pro‐healing characteristics for abdominal wall defect
skin with diverse skin-like properties. J Mater Chem A, treatment. Adv Mater, 34(15):2108992.
9(2):963–973.
https://doi.org/10.1002/adma.202108992
https://doi.org/10.1039/D0TA09101D
23. Huang J, Jiang Y, Liu Y, et al., 2021, Marine-inspired 31. Li Y, Lv S, Yuan H, et al., 2021, Peripheral nerve regeneration
molecular mimicry generates a drug-free, but immunogenic with 3D printed bionic scaffolds loading neural crest stem
hydrogel adhesive protecting surgical anastomosis. Bioact cell derived Schwann cell progenitors. Adv Funct Mater,
Mater, 6(3):770–782. 31(16):2010215.
https://doi.org/10.1016/j.bioactmat.2020.09.010 https://doi.org/https://doi.org/10.1002/adfm.202010215
Volume 9 Issue 3 (2023) 63 https://doi.org/10.18063/ijb.682

