Page 85 - IJB-9-3
P. 85

International Journal of Bioprinting                        3DP hydrogels to combat antibiotic-resistant bacteria



               “acute vs. chronic osteomyelitis,” “the Immune Proteome”   13.  Darouiche RO, Mansouri MD, Zakarevicz D, et al., 2007, In
               and “local antibiotic therapy.” Bone Res, 7(1):20.  vivo efficacy of antimicrobial-coated devices.  J Bone Joint
                                                                  Surg, 89(4):792–797.
               https://doi.org/10.1038/s41413-019-0061-z
                                                                  https://doi.org/10.2106/JBJS.F.00414
            3.   Kavanagh N, Ryan EJ, Widaa A, et al., 2018, Staphylococcal
               osteomyelitis: Disease progression,  treatment  challenges,   14.  Inzana J, Trombetta R, Schwarz E, et al., 2015, 3D printed
               and future directions. Clin Microbiol Reviews, 31(2):e00084-  bioceramics  for  dual  antibiotic  delivery  to  treat  implant-
               17, /cmr/31/2/e00084-17.atom.                      associated bone infection. eCM, 30:232–247.
               https://doi.org/10.1128/CMR.00084-17               https://doi.org/10.22203/eCM.v030a16
            4.   Zimmerli W, Trampuz A, 2011, Implant-associated infection,   15.  Sanz-Ruiz P, Carbó-Laso E, Del Real-Romero JC, et al., 2017,
               in Biofilm Infections, Bjarnsholt T, Jensen PØ, Moser C, et al.,   Microencapsulation of rifampicin: A technique to preserve
               Eds., Springer New York, New York, NY, 69–90.      the mechanical properties of bone cement: Rifampicin-
               https://doi.org/10.1007/978-1-4419-6084-9_5        loaded polymethylmethacrylate. J Orthop Res, 36(1):459–466
            5.   Riool M, de Boer L, Jaspers V, et al., 2014, Staphylococcus   https://doi.org/10.1002/jor.23614
               epidermidis originating from titanium implants infects   16.  Zadpoor AA, Malda J, 2017, Additive manufacturing of
               surrounding tissue and immune cells.  Acta Biomater,   biomaterials, tissues, and organs. Ann Biomed Eng, 45(1):1–11.
               10(12):5202–5212.
                                                                  https://doi.org/10.1007/s10439-016-1719-y
               https://doi.org/10.1016/j.actbio.2014.08.012
                                                               17.  Alexander AE, Wake N, Chepelev L, et al., 2021, A guideline
            6.   Morgenstern M, Vallejo A, McNally MA, et al., 2018, The   for 3D printing terminology in biomedical research utilizing
               effect of local antibiotic prophylaxis when treating open   ISO/ASTM standards. 3D Print Med, 7(1):8.
               limb fractures: A systematic review and meta-analysis. Bone
               Joint Res, 7(7):447–456.                           https://doi.org/10.1186/s41205-021-00098-5
               https://doi.org/10.1302/2046-3758.77.BJR-2018-0043.R1  18.  Ziaee M, Crane NB, 2019, Binder jetting: A review of process,
                                                                  materials, and methods. Addit Manufac, 28:781–801.
            7.   Turgut H, Sacar S, Kaleli I, et al., 2005, Systemic and local
               antibiotic  prophylaxis  in  the prevention  of  Staphylococcus   https://doi.org/10.1016/j.addma.2019.05.031
               epidermidis graft infection. BMC Infect Dis, 5(1):91.  19.  Basit AW, Gaisford S, Eds, 2018, 3D printing of pharmaceuticals,
               https://doi.org/10.1186/1471-2334-5-91             in  AAPS Advances in  the Pharmaceutical Sciences  Series,
                                                                  vol. 31, Springer International Publishing, Cham
            8.   Hendriks JGE, Neut D, van Horn JR, et al., 2005, Bacterial
               survival in the interfacial gap in gentamicin-loaded acrylic   https://doi.org/10.1007/978-3-319-90755-0.
               bone cements. J Bone Joint Surg Br Vol, 87-B(2):272–276.  20.  Murr LE, Gaytan SM, Ramirez DA,  et al., 2012, Metal
               https://doi.org/10.1302/0301-620X.87B2.14781       fabrication  by additive manufacturing  using  laser  and
                                                                  electron beam melting technologies.  J Mater Sci Technol,
            9.   Achermann Y, Eigenmann K, Ledergerber B,  et  al., 2013,   28(1):1–14.
               Factors associated with rifampin resistance in Staphylococcal
               periprosthetic joint infections (PJI): A matched case–control   https://doi.org/10.1016/S1005-0302(12)60016-4
               study. Infection, 41(2):431–437.                21.  Jiang T, Munguia-Lopez JG, Flores-Torres S,  et al., 2019,
               https://doi.org/10.1007/s15010-012-0325-7          Extrusion bioprinting of soft materials: An emerging
                                                                  technique for biological model fabrication. Appl Phys Rev,
            10.  Papkou A, Hedge J, Kapel N,  et al., 2020,  Efflux pump   6(1):011310.
               activity potentiates the evolution of antibiotic resistance
               across S. aureus isolates. Nat Commun, 11(1):3970.  https://doi.org/10.1063/1.5059393
               https://doi.org/10.1038/s41467-020-17735-y      22.  Zhuang P, Ng WL, An J,  et al., 2019, Layer-by-layer
                                                                  ultraviolet assisted extrusion-based (UAE) bioprinting of
            11.  Zimmerli W, Sendi P, 2019, Role of rifampin against   hydrogel constructs with high aspect ratio for soft tissue
               Staphylococcal biofilm infections in vitro, in animal models,   engineering applications. PLoS One, 14(6):e0216776.
               and in orthopedic-device-related infections.  Antimicrob
               Agents Chemother, 63(2):e01746-18.                 https://doi.org/10.1371/journal.pone.0216776
               https://doi.org/10.1128/AAC.01746-18            23.  Li X, Liu B, Pei B,  et al., 2020, Inkjet bioprinting of
                                                                  biomaterials. Chem Rev, 120(19):10793–10833.
            12.  Beeching NJ, Thomas MG, Roberts S, et al., 1986, Comparative
               in-vitro activity of antibiotics incorporated in acrylic bone   https://doi.org/10.1021/acs.chemrev.0c00008
               cement. J Antimicrob Chemother, 17(2):173–184.  24.  Ng WL, Huang X, Shkolnikov V, et al., 2021, Controlling
               https://doi.org/10.1093/jac/17.2.173               droplet impact velocity and droplet volume: Key factors to


            Volume 9 Issue 3 (2023)                         77                         https://doi.org/10.18063/ijb.683
   80   81   82   83   84   85   86   87   88   89   90