Page 87 - IJB-9-3
P. 87
International Journal of Bioprinting 3DP hydrogels to combat antibiotic-resistant bacteria
46. Pitarresi G, Palumbo FS, Calascibetta F, et al., 2013, 50. Wi YM, Greenwood-Quaintance KE, Brinkman CL,
Medicated hydrogels of hyaluronic acid derivatives for use et al., 2018, Rifampicin resistance in Staphylococcus
in orthopedic field. Int J Pharm, 449(1–2):84–94. epidermidis: Molecular characterisation and fitness
cost of RpoB mutations. Int J Antimicrob Agents, 51(5):
https://doi.org/10.1016/j.ijpharm.2013.03.059
670–677.
47. Makino K, Nakajima T, Shikamura M, et al., 2004, Efficient
intracellular delivery of rifampicin to alveolar macrophages https://doi.org/10.1016/j.ijantimicag.2017.12.019
using rifampicin-loaded PLGA microspheres: Effects of 51. O’Neill A, Oliva B, Storey C, et al., 2000, RNA polymerase
molecular weight and composition of PLGA on release of inhibitors with activity against rifampin-resistant mutants
rifampicin. Colloids Surf B Biointerfaces, 36(1):35–42. of Staphylococcus aureus. Antimicrob Agents Chemother,
44(11):3163–3166.
https://doi.org/10.1016/j.colsurfb.2004.03.018
https://doi.org/10.1128/AAC.44.11.3163-3166.2000
48. Özalp Y, Özdemir N, Kocag S, et al., 2001, Controlled
release of vancomycin from biodegradable microcapsules. J 52. Williams K, 1998, Accumulation of rifampicin by Escherichia
Microencapsul, 18(1):89–110. coli and Staphylococcus aureus. J Antimicrob Chemother,
42(5):597–603.
https://doi.org/10.1080/026520401750038638
https://doi.org/10.1093/jac/42.5.597
49. Alexis F, 2005, Factors affecting the degradation and drug- 53. Goldstein BP, 2014, Resistance to rifampicin: A review.
release mechanism of poly(lactic acid) and poly[(lactic J Antibiot, 67(9):625–630.
acid)-co-(glycolic acid)]. Polym Int, 54(1):36–46.
https://doi.org/10.1038/ja.2014.107
https://doi.org/10.1002/pi.1697
Volume 9 Issue 3 (2023) 79 https://doi.org/10.18063/ijb.683

