Page 86 - IJB-9-3
P. 86
International Journal of Bioprinting 3DP hydrogels to combat antibiotic-resistant bacteria
achieving high cell viability in sub-nanoliter droplet-based into biofilm extracellular polymeric substances. RSC Adv,
bioprinting. Int J Bioprint, 8(1):424. 9(25):14198–14208.
https://doi.org/10.18063/ijb.v8i1.424 https://doi.org/10.1039/C9RA00125E
25. Sing SL, An J, Yeong WY, et al., 2016, Laser and electron- 36. Toti US, 2011, Targeted delivery of antibiotics to intracellular
beam powder-bed additive manufacturing of metallic chlamydial infections using PLGA nanoparticles.
implants: A review on processes, materials and designs: Biomaterials, 32(27):6606–6613.
Laser and electron-beam additive manufacturing of metallic https://doi.org/10.1016/j.biomaterials.2011.05.038
implants. J Orthop Res, 34(3):369–385.
37. Khalil NM, Nascimento TCFd, Casa DM, et al., 2013,
https://doi.org/10.1002/jor.23075
Pharmacokinetics of curcumin-loaded PLGA and PLGA–
26. Dermeik B, Travitzky N, 2020, Laminated object PEG blend nanoparticles after oral administration in rats.
manufacturing of ceramic‐based materials. Adv Eng Mater, Colloids Surf B Biointerfaces, 101:353–360.
22(9):2000256.
https://doi.org/10.1016/j.colsurfb.2012.06.024
https://doi.org/10.1002/adem.202000256
38. Wang H, Zhao Y, Wu Y, et al., 2011, Enhanced anti-tumor
27. Li W, Mille LS, Robledo JA, et al., 2020, Recent advances efficacy by co-delivery of doxorubicin and paclitaxel with
in formulating and processing biomaterial inks for vat amphiphilic methoxy PEG-PLGA copolymer nanoparticles.
polymerization‐based 3D printing. Adv Healthcare Mater, Biomaterials, 32(32):8281–8290.
9(15):2000156.
https://doi.org/10.1016/j.biomaterials.2011.07.032
https://doi.org/10.1002/adhm.202000156
39. Rooijakkers SHM, van Wamel WJB, Ruyken M, et al., 2005,
28. Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization- Anti-opsonic properties of staphylokinase. Microbes Infect,
based bioprinting—Process, materials, applications and 7(3):476–484.
regulatory challenges. Biofabrication, 12(2):022001.
https://doi.org/10.1016/j.micinf.2004.12.014
https://doi.org/10.1088/1758-5090/ab6034
40. Kwakman PHS, Velde AAte, Boer L, et al., 2010, How honey
29. Slaughter BV, Khurshid SS, Fisher OZ, et al., 2009, Hydrogels kills bacteria. FASEB J, 24(7):2576–2582.
in regenerative medicine. Adv Mater, 21(32–33):3307–3329.
https://doi.org/10.1096/fj.09-150789
https://doi.org/10.1002/adma.200802106
41. Kwakman PHS, te Velde AA, de Boer L, et al., 2011, Two
30. Bohara S, Suthakorn J, 2022, Surface coating of orthopedic major medicinal honeys have different mechanisms of
implant to enhance the osseointegration and reduction of bactericidal activity. PLoS One, 6(3):e17709.
bacterial colonization: A review. Biomater Res, 26(1):26.
https://doi.org/10.1371/journal.pone.0017709
https://doi.org/10.1186/s40824-022-00269-3
42. Aubry-Damon H, Soussy C-J, Courvalin P, 1998,
31. Liu M, Zeng X, Ma C, et al., 2017, Injectable hydrogels for Characterization of mutations in the RpoB gene that confer
cartilage and bone tissue engineering. Bone Res, 5(1):17014. rifampin resistance in Staphylococcus aureus. Antimicrob
https://doi.org/10.1038/boneres.2017.14 Agents Chemother, 42(10):2590–2594.
32. Ottenbrite, R. M., Park, K., Okano, T., Eds.;, 2010, Biomedical https://doi.org/10.1128/AAC.42.10.2590
Applications of Hydrogels Handbook, Springer New York, 43. Boyle-Vavra S, Berke SK, Lee JC, et al., 2000, Reversion of
New York, NY. the glycopeptide resistance phenotype in Staphylococcus
https://doi.org/10.1007/978-1-4419-5919-5 aureus clinical isolates. Antimicrob Agents Chemother,
44(2):272–277.
33. Celikkin N, Mastrogiacomo S, Jaroszewicz J, et al., 2018,
Gelatin methacrylate scaffold for bone tissue engineering: https://doi.org/10.1128/AAC.44.2.272-277.2000
The influence of polymer concentration: Gelatin 44. Kang H, Shih Y-RV, Hwang Y, et al., 2014, Mineralized
methacrylate scaffold for bone tissue engineering. J Biomed gelatin methacrylate-based matrices induce osteogenic
Mater Res, 106(1):201–209.
differentiation of human induced pluripotent stem cells.
https://doi.org/10.1002/jbm.a.36226 Acta Biomater, 10(12):4961–4970.
34. Wang Y, Qin B, Xia G, 2021, FDA’s poly (lactic-co-glycolic https://doi.org/10.1016/j.actbio.2014.08.010
acid) research program and regulatory outcomes. AAPS J, 45. ter Boo G-JA, Grijpma DW, Moriarty TF, et al., 2015,
23(4).
Antimicrobial delivery systems for local infection
https://doi.org/10.1208/s12248-021-00611-y prophylaxis in orthopedic- and trauma surgery. Biomaterials,
35. Anjum A, Chung P-Y, Ng S-F, 2019, PLGA/xylitol 52:113–125.
nanoparticles enhance antibiofilm activity via penetration https://doi.org/10.1016/j.biomaterials.2015.02.020
Volume 9 Issue 3 (2023) 78 https://doi.org/10.18063/ijb.683

