Page 86 - IJB-9-3
P. 86

International Journal of Bioprinting                        3DP hydrogels to combat antibiotic-resistant bacteria



               achieving high cell viability in sub-nanoliter droplet-based   into biofilm extracellular polymeric substances.  RSC Adv,
               bioprinting. Int J Bioprint, 8(1):424.             9(25):14198–14208.
               https://doi.org/10.18063/ijb.v8i1.424              https://doi.org/10.1039/C9RA00125E
            25.  Sing SL, An J, Yeong WY, et al., 2016, Laser and electron-  36.  Toti US, 2011, Targeted delivery of antibiotics to intracellular
               beam powder-bed additive manufacturing of metallic   chlamydial  infections  using  PLGA  nanoparticles.
               implants: A review on processes, materials and designs:   Biomaterials, 32(27):6606–6613.
               Laser and electron-beam additive manufacturing of metallic   https://doi.org/10.1016/j.biomaterials.2011.05.038
               implants. J Orthop Res, 34(3):369–385.
                                                               37.  Khalil NM, Nascimento TCFd, Casa DM,  et al., 2013,
               https://doi.org/10.1002/jor.23075
                                                                  Pharmacokinetics of curcumin-loaded PLGA and PLGA–
            26.  Dermeik B, Travitzky N, 2020, Laminated object   PEG blend nanoparticles after oral administration in rats.
               manufacturing of ceramic‐based materials. Adv Eng Mater,   Colloids Surf B Biointerfaces, 101:353–360.
               22(9):2000256.
                                                                  https://doi.org/10.1016/j.colsurfb.2012.06.024
               https://doi.org/10.1002/adem.202000256
                                                               38.  Wang H, Zhao Y, Wu Y, et al., 2011, Enhanced anti-tumor
            27.  Li W, Mille LS, Robledo JA, et al., 2020, Recent advances   efficacy by co-delivery of doxorubicin and paclitaxel with
               in formulating and processing biomaterial inks for vat   amphiphilic methoxy PEG-PLGA copolymer nanoparticles.
               polymerization‐based 3D printing.  Adv Healthcare Mater,   Biomaterials, 32(32):8281–8290.
               9(15):2000156.
                                                                  https://doi.org/10.1016/j.biomaterials.2011.07.032
               https://doi.org/10.1002/adhm.202000156
                                                               39.  Rooijakkers SHM, van Wamel WJB, Ruyken M, et al., 2005,
            28.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-  Anti-opsonic properties of staphylokinase. Microbes Infect,
               based bioprinting—Process, materials, applications and   7(3):476–484.
               regulatory challenges. Biofabrication, 12(2):022001.
                                                                  https://doi.org/10.1016/j.micinf.2004.12.014
               https://doi.org/10.1088/1758-5090/ab6034
                                                               40.  Kwakman PHS, Velde AAte, Boer L, et al., 2010, How honey
            29.  Slaughter BV, Khurshid SS, Fisher OZ, et al., 2009, Hydrogels   kills bacteria. FASEB J, 24(7):2576–2582.
               in regenerative medicine. Adv Mater, 21(32–33):3307–3329.
                                                                  https://doi.org/10.1096/fj.09-150789
               https://doi.org/10.1002/adma.200802106
                                                               41.  Kwakman PHS, te Velde AA, de Boer L, et al., 2011, Two
            30.  Bohara S, Suthakorn J, 2022, Surface coating of orthopedic   major  medicinal  honeys  have  different  mechanisms  of
               implant to enhance the osseointegration and reduction of   bactericidal activity. PLoS One, 6(3):e17709.
               bacterial colonization: A review. Biomater Res, 26(1):26.
                                                                  https://doi.org/10.1371/journal.pone.0017709
               https://doi.org/10.1186/s40824-022-00269-3
                                                               42.  Aubry-Damon H, Soussy C-J, Courvalin P, 1998,
            31.  Liu M, Zeng X, Ma C, et al., 2017, Injectable hydrogels for   Characterization of mutations in the RpoB gene that confer
               cartilage and bone tissue engineering. Bone Res, 5(1):17014.  rifampin resistance in  Staphylococcus aureus.  Antimicrob
               https://doi.org/10.1038/boneres.2017.14            Agents Chemother, 42(10):2590–2594.
            32.  Ottenbrite, R. M., Park, K., Okano, T., Eds.;, 2010, Biomedical   https://doi.org/10.1128/AAC.42.10.2590
               Applications of Hydrogels Handbook, Springer New York,   43.  Boyle-Vavra S, Berke SK, Lee JC, et al., 2000, Reversion of
               New York, NY.                                      the glycopeptide resistance phenotype in  Staphylococcus
               https://doi.org/10.1007/978-1-4419-5919-5          aureus clinical isolates.  Antimicrob Agents Chemother,
                                                                  44(2):272–277.
            33.  Celikkin N, Mastrogiacomo S, Jaroszewicz J,  et al., 2018,
               Gelatin methacrylate scaffold for bone tissue engineering:   https://doi.org/10.1128/AAC.44.2.272-277.2000
               The influence of polymer concentration: Gelatin   44.  Kang H, Shih Y-RV, Hwang Y,  et al., 2014, Mineralized
               methacrylate scaffold for bone tissue engineering. J Biomed   gelatin methacrylate-based matrices induce osteogenic
               Mater Res, 106(1):201–209.
                                                                  differentiation of human induced pluripotent stem cells.
               https://doi.org/10.1002/jbm.a.36226                Acta Biomater, 10(12):4961–4970.
            34.  Wang Y, Qin B, Xia G, 2021, FDA’s poly (lactic-co-glycolic   https://doi.org/10.1016/j.actbio.2014.08.010
               acid) research program and regulatory outcomes. AAPS J,   45.  ter Boo G-JA, Grijpma DW, Moriarty TF,  et al., 2015,
               23(4).
                                                                  Antimicrobial delivery systems for local infection
               https://doi.org/10.1208/s12248-021-00611-y         prophylaxis in orthopedic- and trauma surgery. Biomaterials,
            35.  Anjum A, Chung P-Y, Ng S-F, 2019, PLGA/xylitol   52:113–125.
               nanoparticles enhance antibiofilm activity via penetration   https://doi.org/10.1016/j.biomaterials.2015.02.020



            Volume 9 Issue 3 (2023)                         78                         https://doi.org/10.18063/ijb.683
   81   82   83   84   85   86   87   88   89   90   91