Page 240 - IJB-9-4
P. 240

International Journal of Bioprinting                                  Agar production residue for 3D printing



               polyvinyl alcohol fiber-reinforced calcium sulphoaluminate   products to cell delivery systems for biomedical applications.
               cement composites. J Mater Res Technol, 10:1402–1414.  Green Chem, 22:3445–3460.
            22.  Yu J, Wang X, Li D,  et al., 2022, Development of soy   33.  Varshney N, Saji AK, Poddar S, et al., 2022, Freeze–thaw-
               protein isolate emulsion gels as extrusion-based 3D food   induced physically cross-linked superabsorbent polyvinyl
               printing inks: Effect of polysaccharides incorporation. Food   alcohol/soy protein isolate hydrogels for skin wound
               Hydrocoll, 131:107824.                             dressing: In vitro and in vivo characterization.  ACS Appl
                                                                  Mater Interfaces, 14:14033–14048.
            23.  Liu Z, Zhang M, Bhandari B,  et al., 2018, Impact of
               rheological properties of mashed potatoes on 3D printing.   34.  Zhang H, Wang L, Li H, et al., 2021, Changes in properties
               J Food Eng, 220:76–82.                             of soy protein isolate edible films stored at different
                                                                  temperatures: Studies on water and glycerol migration.
            24.  Schwab A, Levato R, D’Este M,  et al., 2020,  Printability   Foods, 10:1797.
               and shape fidelity of bioinks in 3D bioprinting. Chem Rev,
               120:11028–11055.                                35.  Mazurek P, Ekbrant BEF, Madsen FB, et al., 2019, Glycerol-
                                                                  silicone foams—Tunable 3-phase elastomeric porous
            25.  Ouyang  L, Yao  R,  Zhao Y,  et al.,  2016, Effect of  bioink   materials. Eur Polym J, 113:107–114.
               properties on printability and cell viability for 3D bioplotting
               of embryonic stem cells. Biofabrication, 8:035020.  36.  Nurazzi NM, Asyraf MRM, Rayung M,  et al., 2021,
                                                                  Thermogravimetric analysis properties of cellulosic natural
            26.  Liu X, Renard CMGC, Bureau S, et al., 2021, Revisiting the   fiber polymer composites: A review on influence of chemical
               contribution of ATR-FTIR spectroscopy to characterize plant   treatments. Polymers, 13:2710.
               cell wall polysaccharides. Carbohydr Polym, 262:117935.
                                                               37.  Xu Y, Han Y, Chen M, et al., A soy protein-based film by
            27.  Paniz OG, Pereira CMP, Pacheco BS, et al., 2020, Cellulosic   mixed covalent cross-linking and flexibilizing networks. Ind
               material obtained from Antarctic algae biomass. Cellulose,   Crops Prod, 183:114952.
               27:113–126.
                                                               38.  Yavari Maroufi L, Ghorbani M, Tabibiazar M, 2020, A gelatin-
            28.  Jmel  MA, Anders  M, Messaoud GB,  et  al., 2019,  The   based film reinforced by covalent interaction with oxidized
               stranded macroalga Ulva lactuca as a new alternative source   guar gum containing green tea extract as an active food
               of cellulose: Extraction, physicochemical and rheological   packaging system. Food Bioprocess Technol, 13:1633–1644.
               characterization. J Clean Prod, 234:1421–1427.
                                                               39.  Lethesh KC, Evjen S, Venkatraman V, et al,, 2020, Highly
            29.  Mansour M, Salah M, Xu X, 2020, Effect of microencapsulation   efficient cellulose dissolution by alkaline ionic liquids.
               using soy protein isolate and gum arabic as wall material on   Carbohydr Polym, 229:115594.
               red raspberry anthocyanin stability, characterization, and
               simulated gastrointestinal conditions.  Ultrason Sonochem,   40.  Dai H, Li X, Du J, et al., 2020, Effect of interaction between
               63:104927.                                         sorbitol and gelatin on gelatin properties and its mechanism
                                                                  under different citric acid concentrations. Food Hydrocoll,
            30.  Casanova F, Mohammadifar MA, Jahromi M, et al., 2020,   101:105557.
               Physico-chemical,  structural  and  techno-functional
               properties of gelatin from saithe (Pollachius virens) skin. Int   41.  Dorishetty P, Balu R, Sreekumar A,  et al., 2019, Robust
               J Biol Macromol, 156:918–927.                      and tunable hybrid hydrogels from photo-cross-linked soy
                                                                  protein isolate and regenerated silk fibroin.  ACS Sustain
            31.  Basiak E, Lenart A, Debeaufort F, 2018, How glycerol and   Chem Eng, 7:9257–9271.
               water contents affect the structural and functional properties
               of starch-based edible films. Polymers, 10:412.  42.  Norahan MH, Pedroza-González SC, Sánchez-Salazar MG,
                                                                  et al., 2023, Structural and biological engineering of 3D
            32.  Heras KL, Santos-Vizcaino E, Garrido T, et al., 2020, Soy   hydrogels for wound healing. Bioact Mater, 24:197–235.
               protein and chitin sponge-like scaffolds: from natural by-




















            Volume 9 Issue 4 (2023)                        232                         https://doi.org/10.18063/ijb.731
   235   236   237   238   239   240   241   242   243   244   245