Page 340 - IJB-9-4
P. 340

International Journal of Bioprinting                           3D printing in bone regeneration and bone repair



            29.  Ma L, Ma J, Teng M, et al., 2022, Visual analysis of colorectal   polycaprolactone scaffold on bone regeneration. Macromol
               cancer immunotherapy: A bibliometric analysis from 2012   Biosci, 18(6):1800025.
               to 2021. Front Immunol, n/a:1386.
                                                               43.  Gorsse S, Hutchinson C, Gouné M,  et al., 2017, Additive
            30.  Zhang X, Lu Y, Wu S, et al., 2022, An overview of current   manufacturing of metals: A brief review of the characteristic
               research  on  mesenchymal  stem  cell-derived  extracellular   microstructures and properties of steels, Ti-6Al-4V and
               vesicles: A bibliometric analysis from 2009 to 2021. Front   high-entropy alloys. Sci Technol Adv Mater, 18(1):584–610.
               Bioeng Biotechnol, 13:1109.
                                                               44.  Long M, Rack H, 1998, Titanium alloys in total joint
            31.  Fedorovich NE, Alblas J, Hennink WE, et al., 2011, Organ   replacement—A materials science perspective. Biomaterials,
               printing: The future of bone regeneration? Trends Biotechnol,   19(18):1621–1639.
               29(12):601–606.                                 45.  Wang Z, Zhang M, Liu Z, et al., 2022, Biomimetic design
            32.  Eck NJV, Waltman L, 2014,  Visualizing Bibliometric   strategy of complex porous structure based on 3D printing
               Networks, Measuring Scholarly Impact, Springer, 285–320.  Ti-6Al-4V scaffolds for enhanced osseointegration.  Mater
                                                                  Des, 218:110721.
            33.  Chen C, 2016,  CiteSpace: A Practical Guide for Mapping
               Scientific Literature, Nova Science Publishers Hauppauge,   46.  Arcos D, Gómez-Cerezo N, Saiz-Pardo M,  et al., 2022,
               NY, USA.                                           Injectable mesoporous bioactive nanoparticles regenerate
                                                                  bone tissue under osteoporosis conditions. Acta Biomater,
            34.  Xing D, Zhao Y, Dong S, et al., 2018, Global research trends   151:501–511 .
               in stem cells for osteoarthritis: A bibliometric and visualized
               study. Int J Rheum Dis, 21(7):1372–1384.        47.  Gong T, Xie J, Liao J, et al., 2015, Nanomaterials and bone
                                                                  regeneration. Bone Res, 3(1):1–7.
            35.  Chia HN, Wu BM, 2015, Recent advances in 3D printing of
               biomaterials. J Biol Eng, 9(1):1–14.            48.  Li D, Yang Z, Zhao X,  et al., Osteoimmunomodulatory
                                                                  injectable lithium-heparin hydrogel with microspheres/
            36.  Oryan A, Alidadi S, Moshiri A, et al., 2014, Bone regenerative   TGF-β1 delivery promotes M2 macrophage polarization
               medicine: Classic options, novel strategies, and future   and osteogenesis for guided bone regeneration. Chem Eng J,
               directions. J Orthop Surg Res, 9(1):1–27.          435:134991.
            37.  Mu Q, Wang L, Dunn CK, et al., 2017, Digital light processing   49.  Donghua Huang KX, Huang X, Lin N, et al., 2022, Remotely
               3D printing of conductive complex structures. Addit Manuf,   temporal scheduled macrophage phenotypic transition
               18:74–83.                                          enables optimized immunomodulatory bone regeneration.
            38.  Zhang M, Lin R, Wang X,  et al., 2020, 3D printing of   Small, 18(39):e2203680.
               Haversian bone–mimicking scaffolds for multicellular   50.  Claes  L,  Heigele  C,  1999,  Magnitudes  of  local  stress  and
               delivery in bone regeneration. Sci Adv, 6(12):eaaz6725.  strain along bony surfaces predict the course and type of
            39.  Zhang B, Pei X, Zhou C, et al., 2018, The biomimetic design   fracture healing. J Biomech, 32(3):255–266.
               and 3D printing of customized mechanical properties porous   51.  Bashkuev M, Checa S, Postigo S, et al., 2015, Computational
               Ti6Al4V scaffold for load-bearing bone reconstruction.   analyses of different intervertebral cages for lumbar spinal
               Mater Des, 152:30–39.                              fusion. J Biomech, 48(12):3274–3282.
            40.  Kim YS, Majid M, Melchiorri AJ, et al., 2019, Applications   52.  Yang C, Ma H, Wang Z, et al., 2021, 3D printed Wesselsite
               of decellularized extracellular matrix in bone and cartilage   nanosheets functionalized scaffold facilitates NIRnal of
               tissue engineering. Bioeng Transl Med, 4(1):83–95.  biomechanics 4apy and vascularized bone regeneration. Adv
            41.  Hung BP, Naved BA, Nyberg EL,  et al., 2016, Three-  Sci, 8(20):2100894.
               dimensional printing of bone extracellular matrix for   53.  Nie R, Sun Y, Lv H,  et al., 2022, 3D printing of MXene
               craniofacial regeneration. ACS Biomater Sci Eng, 2(10):1806–  composite hydrogel scaffolds for photothermal antibacterial
               1816.                                              activity and bone regeneration in infected bone defect
            42.  Kim JY, Ahn G, Kim C,  et  al., 2018, Synergistic effects   models. Nanoscale, 14:8112–8129.
               of beta tri-calcium phosphate and porcine-derived   54.  Rodrigues M, Kosaric N, Bonham CA, et al., 2019, Wound
               decellularized bone extracellular matrix in 3D-printed   healing: A cellular perspective. Physiol Rev, 99(1):665–706.













            Volume 9 Issue 4 (2023)                        332                         https://doi.org/10.18063/ijb.737
   335   336   337   338   339   340   341   342   343   344   345