Page 340 - IJB-9-4
P. 340
International Journal of Bioprinting 3D printing in bone regeneration and bone repair
29. Ma L, Ma J, Teng M, et al., 2022, Visual analysis of colorectal polycaprolactone scaffold on bone regeneration. Macromol
cancer immunotherapy: A bibliometric analysis from 2012 Biosci, 18(6):1800025.
to 2021. Front Immunol, n/a:1386.
43. Gorsse S, Hutchinson C, Gouné M, et al., 2017, Additive
30. Zhang X, Lu Y, Wu S, et al., 2022, An overview of current manufacturing of metals: A brief review of the characteristic
research on mesenchymal stem cell-derived extracellular microstructures and properties of steels, Ti-6Al-4V and
vesicles: A bibliometric analysis from 2009 to 2021. Front high-entropy alloys. Sci Technol Adv Mater, 18(1):584–610.
Bioeng Biotechnol, 13:1109.
44. Long M, Rack H, 1998, Titanium alloys in total joint
31. Fedorovich NE, Alblas J, Hennink WE, et al., 2011, Organ replacement—A materials science perspective. Biomaterials,
printing: The future of bone regeneration? Trends Biotechnol, 19(18):1621–1639.
29(12):601–606. 45. Wang Z, Zhang M, Liu Z, et al., 2022, Biomimetic design
32. Eck NJV, Waltman L, 2014, Visualizing Bibliometric strategy of complex porous structure based on 3D printing
Networks, Measuring Scholarly Impact, Springer, 285–320. Ti-6Al-4V scaffolds for enhanced osseointegration. Mater
Des, 218:110721.
33. Chen C, 2016, CiteSpace: A Practical Guide for Mapping
Scientific Literature, Nova Science Publishers Hauppauge, 46. Arcos D, Gómez-Cerezo N, Saiz-Pardo M, et al., 2022,
NY, USA. Injectable mesoporous bioactive nanoparticles regenerate
bone tissue under osteoporosis conditions. Acta Biomater,
34. Xing D, Zhao Y, Dong S, et al., 2018, Global research trends 151:501–511 .
in stem cells for osteoarthritis: A bibliometric and visualized
study. Int J Rheum Dis, 21(7):1372–1384. 47. Gong T, Xie J, Liao J, et al., 2015, Nanomaterials and bone
regeneration. Bone Res, 3(1):1–7.
35. Chia HN, Wu BM, 2015, Recent advances in 3D printing of
biomaterials. J Biol Eng, 9(1):1–14. 48. Li D, Yang Z, Zhao X, et al., Osteoimmunomodulatory
injectable lithium-heparin hydrogel with microspheres/
36. Oryan A, Alidadi S, Moshiri A, et al., 2014, Bone regenerative TGF-β1 delivery promotes M2 macrophage polarization
medicine: Classic options, novel strategies, and future and osteogenesis for guided bone regeneration. Chem Eng J,
directions. J Orthop Surg Res, 9(1):1–27. 435:134991.
37. Mu Q, Wang L, Dunn CK, et al., 2017, Digital light processing 49. Donghua Huang KX, Huang X, Lin N, et al., 2022, Remotely
3D printing of conductive complex structures. Addit Manuf, temporal scheduled macrophage phenotypic transition
18:74–83. enables optimized immunomodulatory bone regeneration.
38. Zhang M, Lin R, Wang X, et al., 2020, 3D printing of Small, 18(39):e2203680.
Haversian bone–mimicking scaffolds for multicellular 50. Claes L, Heigele C, 1999, Magnitudes of local stress and
delivery in bone regeneration. Sci Adv, 6(12):eaaz6725. strain along bony surfaces predict the course and type of
39. Zhang B, Pei X, Zhou C, et al., 2018, The biomimetic design fracture healing. J Biomech, 32(3):255–266.
and 3D printing of customized mechanical properties porous 51. Bashkuev M, Checa S, Postigo S, et al., 2015, Computational
Ti6Al4V scaffold for load-bearing bone reconstruction. analyses of different intervertebral cages for lumbar spinal
Mater Des, 152:30–39. fusion. J Biomech, 48(12):3274–3282.
40. Kim YS, Majid M, Melchiorri AJ, et al., 2019, Applications 52. Yang C, Ma H, Wang Z, et al., 2021, 3D printed Wesselsite
of decellularized extracellular matrix in bone and cartilage nanosheets functionalized scaffold facilitates NIRnal of
tissue engineering. Bioeng Transl Med, 4(1):83–95. biomechanics 4apy and vascularized bone regeneration. Adv
41. Hung BP, Naved BA, Nyberg EL, et al., 2016, Three- Sci, 8(20):2100894.
dimensional printing of bone extracellular matrix for 53. Nie R, Sun Y, Lv H, et al., 2022, 3D printing of MXene
craniofacial regeneration. ACS Biomater Sci Eng, 2(10):1806– composite hydrogel scaffolds for photothermal antibacterial
1816. activity and bone regeneration in infected bone defect
42. Kim JY, Ahn G, Kim C, et al., 2018, Synergistic effects models. Nanoscale, 14:8112–8129.
of beta tri-calcium phosphate and porcine-derived 54. Rodrigues M, Kosaric N, Bonham CA, et al., 2019, Wound
decellularized bone extracellular matrix in 3D-printed healing: A cellular perspective. Physiol Rev, 99(1):665–706.
Volume 9 Issue 4 (2023) 332 https://doi.org/10.18063/ijb.737

