Page 35 - IJB-9-4
P. 35
International Journal of Bioprinting Lattice-Solid hybrid 3D printing for artificial implant
8. Sing SL, 2022, Perspectives on additive manufacturing 19. Park JW, Kang HG, Kim JH, et al., 2021, The application
enabled beta-titanium alloys for biomedical applications. Int of 3D-printing technology in pelvic bone tumor surgery. J
J Bioprint, 8(1):478. Orthop Sci, 26(2):276–283.
http://dx.doi.org/10.18063/ijb.v8i1.478 https://doi.org/10.1016/j.jos.2020.03.004
9. Lee MS, Kim H, Koo YT, et al., 2022, Selective laser melting 20. Mumith A, Coathup M, Chimutengwende-Gordon M, et al.,
process for sensor embedding into SUS316L with heat 2017, Augmenting the osseointegration of endoprostheses
dissipative inner cavity design. Met Mater Int, 28:297–305. using laser-sintered porous collars. Bone Jt J, 99-B:276–282.
https://doi.org/10.1007/s12540-021-01106-3 https://doi.org/10.1302/0301-620X.99B2.BJJ-2016-0584.R1
10. Wong KC, Kumta SM, Geel NV, et al., 2015, One-step 21. McGilvray KC, Easley J, Seim HB, et al., 2018, Bony
reconstruction with a 3D-printed, biomechanically ingrowth potential of 3D-printed porous titanium alloy: A
evaluated custom implant after complex pelvic tumor direct comparison of interbody cage materials in an in vivo
resection. Aided Surg, 20:14–23. ovine lumbar fusion model. Spine J, 18(7):1250–1260.
https://doi.org/10.3109/10929088.2015.1076039 https://doi.org/10.1016/j.spinee.2018.02.018
11. Liang H, Ji T, Zhang Y, et al., 2017, Reconstruction with 22. Wu SH, Li Y, Zhang YQ, et al., 2013, Porous titanium-6
3D-printed pelvic endoprostheses after resection of a pelvic aluminum-4 vanadium cage has better osseointegration and
tumour. Bone Jt J, 99-B:267–275. less micromotion than a poly-ether-ether-ketone cage in
sheep vertebral fusion. Artif Organs, 37:E191–E201.
https://doi.org/10.1302/0301-620X.99B2.BJJ-2016-0654.R1
12. Wei R, Guo W, Ji T, et al., 2017, One-step reconstruction with https://doi.org/10.1111/aor.12153
a 3D-printed, custom-made prosthesis after total en bloc 23. Li JP, Habibovic P, Van Den Doel M, et al., 2007, Bone
sacrectomy: A technical note. Eur Spine J, 26:1902–1909. ingrowth in porous titanium implants produced by 3D fiber
deposition. Biomaterials, 28:2810–2820.
https://doi.org/10.1007/s00586-016-4871-z
13. Park JW, Kang HG, Lim KM, et al., 2018, Three- https://doi.org/10.1016/j.biomaterials.2007.02.020
dimensionally printed personalized implant design and 24. De Wild M, Zimmermann S, Rüegg J, et al., 2016, Influence
reconstructive surgery for a bone tumor of the calcaneus. of microarchitecture on osteoconduction and mechanics
JBJS Case Connect, 8:e25. of porous titanium scaffolds generated by selective laser
melting. 3D Print Addit Manuf, 3(3):142–151.
https://doi.org/10.2106/JBJS.CC.17.00212
14. Park JW, Kang HG, Lim KM, et al., 2018, Bone tumor https://doi.org/10.1089/3dp.2016.0004
resection guide using three-dimensional printing for limb 25. Park JW, Song CA, Kang HG, et al., 2020, Integration of
salvage surgery. J Surg Oncol, 118:898–905. a three-dimensional-printed titanium implant in human
tissues: Case study. Appl Sci, 10:553.
https://doi.org/10.1002/jso.25236
15. Angelini A, Trovarelli G, Berizzi A, et al., 2019, Three- https://doi.org/10.3390/app10020553
dimension-printed custom-made prosthetic reconstructions: 26. Park JW, Shin YC, Kang HG, et al., 2021, In vivo analysis
From revision surgery to oncologic reconstructions. Int of post-joint-preserving surgery fracture of 3D-printed
Orthop, 43:123–132. Ti-6Al-4V implant to treat bone cancer. Bio-des Manuf,
4:879–888.
https://doi.org/10.1007/s00264-018-4232-0
16. Park JW, Kang HG, Kim JH, et al., 2020, New 3-dimensional https://doi.org/10.1007/s42242-021-00147-2
implant application as an alternative to allograft in limb 27. Limmahakhun S, Oloyede A, Sitthiseripratip K, et al., 2017,
salvage surgery: A technical note on 10 cases. Acta Orthop, Stiffness and strength tailoring of cobalt chromium graded
91:489–496. cellular structures for stress-shielding reduction. Mater Des,
114:633–641.
https://doi.org/10.1080/17453674.2020.1755543
17. Eleutério SJP, Senerchia AA, Almeida, et al., 2015, https://doi.org/10.1016/j.matdes.2016.11.090
Osteosarcoma in patients younger than 12 years old without 28. Mahmoud D, Elbestawi MA, 2019, Selective laser melting
metastases have similar prognosis as adolescent and young of porosity graded lattice structures for bone implants. Int J
adults. Pediatr Blood Cancer, 62:1209–1213. Adv Manuf, 100:2915–2927.
https://doi.org/10.1002/pbc.25459 https://doi.org/10.1007/s00170-018-2886-9
18. Kim Y, Jang WY, Park JW, et al., 2020, Transepiphyseal 29. Leong KF, Chua SC, Sudarmadji N, et al., 2008, Engineering
resection for osteosarcoma in patients with open physes functionally graded tissue engineering scaffolds. J Mech
using MRI assessment. Bone Jt J, 102-B:772–778. Behav Biomed Mater, 1(2):140–152.
https://doi.org/10.1302/0301-620X.102B6.BJJ-2019-1141.R2 https://doi.org/10.1016/j.jmbbm.2007.11.002
Volume 9 Issue 4 (2023) 27 https://doi.org/10.18063/ijb.716

