Page 35 - IJB-9-4
P. 35

International Journal of Bioprinting                          Lattice-Solid hybrid 3D printing for artificial implant



            8.   Sing SL, 2022, Perspectives on additive manufacturing   19.  Park JW, Kang HG, Kim JH, et al., 2021, The application
               enabled beta-titanium alloys for biomedical applications. Int   of 3D-printing technology in pelvic bone tumor surgery. J
               J Bioprint, 8(1):478.                              Orthop Sci, 26(2):276–283.
               http://dx.doi.org/10.18063/ijb.v8i1.478            https://doi.org/10.1016/j.jos.2020.03.004
            9.   Lee MS, Kim H, Koo YT, et al., 2022, Selective laser melting   20.   Mumith A, Coathup M, Chimutengwende-Gordon M, et al.,
               process for sensor  embedding  into SUS316L with heat   2017, Augmenting the osseointegration of endoprostheses
               dissipative inner cavity design. Met Mater Int, 28:297–305.  using laser-sintered porous collars. Bone Jt J, 99-B:276–282.
               https://doi.org/10.1007/s12540-021-01106-3         https://doi.org/10.1302/0301-620X.99B2.BJJ-2016-0584.R1
            10.  Wong KC, Kumta SM, Geel NV,  et al., 2015, One-step   21.  McGilvray KC, Easley J, Seim HB,  et al., 2018, Bony
               reconstruction with a 3D-printed, biomechanically   ingrowth potential of 3D-printed porous titanium alloy: A
               evaluated custom implant after complex pelvic tumor   direct comparison of interbody cage materials in an in vivo
               resection. Aided Surg, 20:14–23.                   ovine lumbar fusion model. Spine J, 18(7):1250–1260.
               https://doi.org/10.3109/10929088.2015.1076039      https://doi.org/10.1016/j.spinee.2018.02.018
            11.  Liang H, Ji T, Zhang Y,  et  al., 2017, Reconstruction with   22.  Wu  SH, Li Y,  Zhang YQ,  et al.,  2013,  Porous  titanium-6
               3D-printed pelvic endoprostheses after resection of a pelvic   aluminum-4 vanadium cage has better osseointegration and
               tumour. Bone Jt J, 99-B:267–275.                   less micromotion than a poly-ether-ether-ketone cage in
                                                                  sheep vertebral fusion. Artif Organs, 37:E191–E201.
               https://doi.org/10.1302/0301-620X.99B2.BJJ-2016-0654.R1
            12.  Wei R, Guo W, Ji T, et al., 2017, One-step reconstruction with   https://doi.org/10.1111/aor.12153
               a 3D-printed, custom-made prosthesis after total en bloc   23.  Li JP, Habibovic P, Van Den Doel M,  et al., 2007, Bone
               sacrectomy: A technical note. Eur Spine J, 26:1902–1909.  ingrowth in porous titanium implants produced by 3D fiber
                                                                  deposition. Biomaterials, 28:2810–2820.
               https://doi.org/10.1007/s00586-016-4871-z
            13.  Park JW, Kang HG, Lim KM,  et al., 2018, Three-  https://doi.org/10.1016/j.biomaterials.2007.02.020
               dimensionally  printed  personalized  implant  design  and   24.  De Wild M, Zimmermann S, Rüegg J, et al., 2016, Influence
               reconstructive surgery for a bone tumor of the calcaneus.   of microarchitecture on osteoconduction and mechanics
               JBJS Case Connect, 8:e25.                          of porous titanium scaffolds  generated by selective  laser
                                                                  melting. 3D Print Addit Manuf, 3(3):142–151.
               https://doi.org/10.2106/JBJS.CC.17.00212
            14.  Park JW, Kang HG, Lim KM,  et  al., 2018, Bone tumor   https://doi.org/10.1089/3dp.2016.0004
               resection guide using three-dimensional printing for limb   25.  Park  JW, Song  CA, Kang  HG,  et al., 2020,  Integration of
               salvage surgery. J Surg Oncol, 118:898–905.        a three-dimensional-printed titanium implant in human
                                                                  tissues: Case study. Appl Sci, 10:553.
               https://doi.org/10.1002/jso.25236
            15.  Angelini A, Trovarelli G, Berizzi A,  et al., 2019, Three-  https://doi.org/10.3390/app10020553
               dimension-printed custom-made prosthetic reconstructions:   26.  Park JW, Shin YC, Kang HG, et al., 2021, In vivo analysis
               From revision surgery to oncologic reconstructions.  Int   of post-joint-preserving surgery fracture of 3D-printed
               Orthop, 43:123–132.                                Ti-6Al-4V implant to treat bone cancer.  Bio-des Manuf,
                                                                  4:879–888.
               https://doi.org/10.1007/s00264-018-4232-0
            16.  Park JW, Kang HG, Kim JH, et al., 2020, New 3-dimensional   https://doi.org/10.1007/s42242-021-00147-2
               implant application as an alternative to allograft in limb   27.  Limmahakhun S, Oloyede A, Sitthiseripratip K, et al., 2017,
               salvage surgery: A technical note on 10 cases. Acta Orthop,   Stiffness and strength tailoring of cobalt chromium graded
               91:489–496.                                        cellular structures for stress-shielding reduction. Mater Des,
                                                                  114:633–641.
               https://doi.org/10.1080/17453674.2020.1755543
            17.  Eleutério SJP, Senerchia AA, Almeida,  et al., 2015,   https://doi.org/10.1016/j.matdes.2016.11.090
               Osteosarcoma in patients younger than 12 years old without   28.  Mahmoud D, Elbestawi MA, 2019, Selective laser melting
               metastases have similar prognosis as adolescent and young   of porosity graded lattice structures for bone implants. Int J
               adults. Pediatr Blood Cancer, 62:1209–1213.        Adv Manuf, 100:2915–2927.
               https://doi.org/10.1002/pbc.25459                  https://doi.org/10.1007/s00170-018-2886-9
            18.  Kim Y, Jang WY, Park JW,  et al., 2020, Transepiphyseal   29.  Leong KF, Chua SC, Sudarmadji N, et al., 2008, Engineering
               resection for osteosarcoma in patients with open physes   functionally graded tissue engineering scaffolds.  J Mech
               using MRI assessment. Bone Jt J, 102-B:772–778.    Behav Biomed Mater, 1(2):140–152.
               https://doi.org/10.1302/0301-620X.102B6.BJJ-2019-1141.R2  https://doi.org/10.1016/j.jmbbm.2007.11.002


            Volume 9 Issue 4 (2023)                         27                         https://doi.org/10.18063/ijb.716
   30   31   32   33   34   35   36   37   38   39   40