Page 442 - IJB-9-4
P. 442

International Journal of Bioprinting                                  3D bioprinting of artificial blood vessel


            153. Freeman S, Ramos R, Alexis Chando P, et al., 2019, A bioink   F127.  J  Colloid Interface Sci, 216:34–40. doi.org/10.1006/
               blend for rotary 3D bioprinting tissue engineered small-  jcis.1999.6273
               diameter vascular constructs. Acta Biomater, 95: 152–164.
                                                               165. Liu Y, Zhang Y, Jiang W, et al., 2019, A novel biodegradable
               https://doi.org/10.1016/j.actbio.2019.06.052       multilayered bioengineered vascular construct with a
                                                                  curved structure and multi-branches.  Micromachines
            154. Li L, Qin S, Peng J, et al., 2020, Engineering gelatin-based   (Basel), 10: 275.
               alginate/carbon nanotubes blend bioink for direct 3D printing
               of vessel constructs. Int J Biol Macromol, 145: 262–271.      https://doi.org/10.3390/mi10040275
               https://doi.org/10.1016/j.ijbiomac.2019.12.174  166. O’Connell CD, Konate S, Onofrillo C, et al., 2020, Free-
                                                                  form co-axial bioprinting of a gelatin methacryloyl bio-
            155. Hickson TG, Polson A, 1968, Some physical characteristics   ink by direct  in situ photo-crosslinking during extrusion.
               of the agarose molecule. Biochim Biophys Acta, 165: 43–58.
                                                                  Bioprinting, 19: e00087.
               https://doi.org/10.1016/0304-4165(68)90186-4       https://doi.org/10.1016/j.bprint.2020.e00087
            156. Gadjanski I, Yodmuang S, Spiller K,  et al., 2013,   167. Chen Y, Xiong X, Liu X, et al., 2020, 3d bioprinting of shear-
               Supplementation of exogenous adenosine 5’-triphosphate   thinning hybrid bioinks with excellent bioactivity derived
               enhances mechanical properties of 3D cell-agarose   from gellan/alginate and thixotropic magnesium phosphate-
               constructs for cartilage tissue engineering.  Tissue Eng   based gels. J Mater Chem B, 8: 5500–5514.
               Part A, 19: 2188–2200.
                                                                  https://doi.org/10.1039/D0TB00060D
               https://doi.org/10.1089/ten.TEA.2012.0352
                                                               168. Müller M, Becher J, Schnabelrauch M,  et al., 2015,
            157. López-Marcial GR, Zeng AY, Osuna C, et al., 2018, Agarose-  Nanostructured pluronic hydrogels as bioinks for 3D
               based hydrogels as suitable bioprinting materials for tissue   bioprinting. Biofabrication, 7: 035006.
               engineering. ACS Biomater Sci Eng, 4: 3610–3616.
                                                                  https://doi.org/10.1088/1758-5090/7/3/035006
               https://doi.org/10.1021/acsbiomaterials.8b00903
                                                               169. Millik SC, Dostie AM, Karis DG, et al., 2019, 3D printed
            158. Forget A, Derme T, Mitterberger D, et al., 2019, Architecture-  coaxial nozzles for the extrusion of hydrogel tubes toward
               inspired paradigm for 3D bioprinting of vessel-like   modeling vascular endothelium. Biofabrication, 11: 045009.
               structures using extrudable carboxylated agarose hydrogels.
               Emerg Mater, 2: 233–243.                           https://doi.org/10.1088/1758-5090/ab2b4d
               https://doi.org/10.1007/s42247-019-00045-5      170. Selmi TA, Verdonk P, Chambat P, et al., 2008, Autologous
                                                                  chondrocyte implantation in a novel alginate-agarose
            159. Sharma C, Bhardwaj NK, 2019, Bacterial nanocellulose:   hydrogel: Outcome at two years.  J  Bone Joint Surg Br,
               Present status, biomedical applications and future   90: 597–604.
               perspectives. Mater Sci Eng C Mater Biol Appl, 104: 109963.
                                                                  https://doi.org/10.1302/0301-620x.90b5.20360
               https://doi.org/10.1016/j.msec.2019.109963
                                                               171. Remminghorst U, Rehm BH, 2006, Bacterial alginates: From
            160. Klemm D, Kramer F, Moritz S, et al., 2011, Nanocelluloses:   biosynthesis to applications. Biotechnol Lett, 28: 1701–1712.
               A new family of nature-based materials. Angew Chem Int Ed
               Engl, 50: 5438–5466.                               https://doi.org/10.1007/s10529-006-9156-x
               https://doi.org/10.1002/anie.201001273          172. Kang SM, Lee JH, Huh YS,  et al., 2021, Alginate
                                                                  microencapsulation  for  three-dimensional  in vitro  cell
            161. Da Gama FM, Dourado F, 2018, Bacterial nanocellulose:   culture. ACS Biomater Sci Eng, 7: 2864–2879.
               What future? Bioimpacts, 8: 1–3.
                                                                  https://doi.org/10.1021/acsbiomaterials.0c00457
               https://doi.org/10.15171/bi.2018.01
                                                               173. Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
            162. Di Biase M, De Leonardis P, Castelletto V,  et al., 2011,   bioprinting of heterogeneous 3D tissue constructs using
               Photopolymerization of pluronic F127 diacrylate: A colloid-  low-viscosity bioink. Adv Mater, 28: 677–684.
               templated polymerization. Soft Matter, 7: 4928–4937.
                                                                  https://doi.org/10.1002/adma.201503310
               https://doi.org/10.1039/C1SM05095H
                                                               174. Gao Q, Liu Z, Lin Z, et al., 2017, 3D Bioprinting of vessel-like
            163. Malda J, Visser J, Melchels FP, et al., 2013, 25  anniversary   structures with multilevel fluidic channels. ACS Biomater Sci
                                                th
               article: Engineering hydrogels for biofabrication. Adv Mater,   Eng, 3: 399–408.
               25: 5011–5028.
                                                                  https://doi.org/10.1021/acsbiomaterials.6b00643
               https://doi.org/10.1002/adma.201302042
                                                               175. Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D
            164. Bohorquez M, Koch C, Trygstad T,  et  al., 1999, A study   bioprinting of perfusable vascular constructs using a blend
               of  the  temperature-dependent  micellization  of  pluronic   bioink. Biomaterials, 106: 58–68.


            Volume 9 Issue 4 (2023)                        434                         https://doi.org/10.18063/ijb.740
   437   438   439   440   441   442   443   444   445   446   447