Page 442 - IJB-9-4
P. 442
International Journal of Bioprinting 3D bioprinting of artificial blood vessel
153. Freeman S, Ramos R, Alexis Chando P, et al., 2019, A bioink F127. J Colloid Interface Sci, 216:34–40. doi.org/10.1006/
blend for rotary 3D bioprinting tissue engineered small- jcis.1999.6273
diameter vascular constructs. Acta Biomater, 95: 152–164.
165. Liu Y, Zhang Y, Jiang W, et al., 2019, A novel biodegradable
https://doi.org/10.1016/j.actbio.2019.06.052 multilayered bioengineered vascular construct with a
curved structure and multi-branches. Micromachines
154. Li L, Qin S, Peng J, et al., 2020, Engineering gelatin-based (Basel), 10: 275.
alginate/carbon nanotubes blend bioink for direct 3D printing
of vessel constructs. Int J Biol Macromol, 145: 262–271. https://doi.org/10.3390/mi10040275
https://doi.org/10.1016/j.ijbiomac.2019.12.174 166. O’Connell CD, Konate S, Onofrillo C, et al., 2020, Free-
form co-axial bioprinting of a gelatin methacryloyl bio-
155. Hickson TG, Polson A, 1968, Some physical characteristics ink by direct in situ photo-crosslinking during extrusion.
of the agarose molecule. Biochim Biophys Acta, 165: 43–58.
Bioprinting, 19: e00087.
https://doi.org/10.1016/0304-4165(68)90186-4 https://doi.org/10.1016/j.bprint.2020.e00087
156. Gadjanski I, Yodmuang S, Spiller K, et al., 2013, 167. Chen Y, Xiong X, Liu X, et al., 2020, 3d bioprinting of shear-
Supplementation of exogenous adenosine 5’-triphosphate thinning hybrid bioinks with excellent bioactivity derived
enhances mechanical properties of 3D cell-agarose from gellan/alginate and thixotropic magnesium phosphate-
constructs for cartilage tissue engineering. Tissue Eng based gels. J Mater Chem B, 8: 5500–5514.
Part A, 19: 2188–2200.
https://doi.org/10.1039/D0TB00060D
https://doi.org/10.1089/ten.TEA.2012.0352
168. Müller M, Becher J, Schnabelrauch M, et al., 2015,
157. López-Marcial GR, Zeng AY, Osuna C, et al., 2018, Agarose- Nanostructured pluronic hydrogels as bioinks for 3D
based hydrogels as suitable bioprinting materials for tissue bioprinting. Biofabrication, 7: 035006.
engineering. ACS Biomater Sci Eng, 4: 3610–3616.
https://doi.org/10.1088/1758-5090/7/3/035006
https://doi.org/10.1021/acsbiomaterials.8b00903
169. Millik SC, Dostie AM, Karis DG, et al., 2019, 3D printed
158. Forget A, Derme T, Mitterberger D, et al., 2019, Architecture- coaxial nozzles for the extrusion of hydrogel tubes toward
inspired paradigm for 3D bioprinting of vessel-like modeling vascular endothelium. Biofabrication, 11: 045009.
structures using extrudable carboxylated agarose hydrogels.
Emerg Mater, 2: 233–243. https://doi.org/10.1088/1758-5090/ab2b4d
https://doi.org/10.1007/s42247-019-00045-5 170. Selmi TA, Verdonk P, Chambat P, et al., 2008, Autologous
chondrocyte implantation in a novel alginate-agarose
159. Sharma C, Bhardwaj NK, 2019, Bacterial nanocellulose: hydrogel: Outcome at two years. J Bone Joint Surg Br,
Present status, biomedical applications and future 90: 597–604.
perspectives. Mater Sci Eng C Mater Biol Appl, 104: 109963.
https://doi.org/10.1302/0301-620x.90b5.20360
https://doi.org/10.1016/j.msec.2019.109963
171. Remminghorst U, Rehm BH, 2006, Bacterial alginates: From
160. Klemm D, Kramer F, Moritz S, et al., 2011, Nanocelluloses: biosynthesis to applications. Biotechnol Lett, 28: 1701–1712.
A new family of nature-based materials. Angew Chem Int Ed
Engl, 50: 5438–5466. https://doi.org/10.1007/s10529-006-9156-x
https://doi.org/10.1002/anie.201001273 172. Kang SM, Lee JH, Huh YS, et al., 2021, Alginate
microencapsulation for three-dimensional in vitro cell
161. Da Gama FM, Dourado F, 2018, Bacterial nanocellulose: culture. ACS Biomater Sci Eng, 7: 2864–2879.
What future? Bioimpacts, 8: 1–3.
https://doi.org/10.1021/acsbiomaterials.0c00457
https://doi.org/10.15171/bi.2018.01
173. Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
162. Di Biase M, De Leonardis P, Castelletto V, et al., 2011, bioprinting of heterogeneous 3D tissue constructs using
Photopolymerization of pluronic F127 diacrylate: A colloid- low-viscosity bioink. Adv Mater, 28: 677–684.
templated polymerization. Soft Matter, 7: 4928–4937.
https://doi.org/10.1002/adma.201503310
https://doi.org/10.1039/C1SM05095H
174. Gao Q, Liu Z, Lin Z, et al., 2017, 3D Bioprinting of vessel-like
163. Malda J, Visser J, Melchels FP, et al., 2013, 25 anniversary structures with multilevel fluidic channels. ACS Biomater Sci
th
article: Engineering hydrogels for biofabrication. Adv Mater, Eng, 3: 399–408.
25: 5011–5028.
https://doi.org/10.1021/acsbiomaterials.6b00643
https://doi.org/10.1002/adma.201302042
175. Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D
164. Bohorquez M, Koch C, Trygstad T, et al., 1999, A study bioprinting of perfusable vascular constructs using a blend
of the temperature-dependent micellization of pluronic bioink. Biomaterials, 106: 58–68.
Volume 9 Issue 4 (2023) 434 https://doi.org/10.18063/ijb.740

