Page 439 - IJB-9-4
P. 439

International Journal of Bioprinting                                  3D bioprinting of artificial blood vessel


               https://doi.org/10.1007/s13770-018-0144-8       99.  Rodell CB, MacArthur JW, Dorsey SM, et al., 2015, Shear-
                                                                  thinning  supramolecular hydrogels with  secondary
            88.  Kesti M, Müller M, Becher J, et al. 2015, A versatile bioink
               for three-dimensional printing of cellular scaffolds based   autonomous covalent crosslinking to modulate viscoelastic
               on thermally and photo-triggered tandem gelation.  Acta   properties in vivo. Adv Funct Mater, 25: 636–644.
               Biomater, 11: 162–172.                             https://doi.org/10.1002/adfm.201403550
               https://doi.org/10.1016/j.actbio.2014.09.033    100. Loebel C, Rodell CB, Chen MH, et al., 2017, Shear-thinning
                                                                  and self-healing hydrogels as injectable therapeutics and for
            89.  Poldervaart  MT,  Goversen B,  De  Ruijter M,  et al.,  2017,
               3D bioprinting of methacrylated hyaluronic acid (MeHA)   3D-printing. Nat Protoc, 12: 1521–1541.
               hydrogel with intrinsic osteogenicity. PLoS One, 12: e0177628.      https://doi.org/10.1038/nprot.2017.053
               https://doi.org/10.1371/journal.pone.0177628    101. Maxson EL, Young MD, Noble C,  et al., 2019,  In vivo
                                                                  remodeling of a 3D-Bioprinted tissue engineered heart valve
            90.  Ouyang L, Armstrong JPK, Lin Y, et al., 2020, Expanding and
               optimizing 3D bioprinting capabilities using complementary   scaffold. Bioprinting, 16: e00059.
               network bioinks. Sci Adv, 6: 035045                https://doi.org/10.1016/j.bprint.2019.e00059
               https://doi.org/10.1126/sciadv.abc5529          102. Alexander B, Daulton TL, Genin GM,  et al., 2012, The
                                                                  nanometre-scale physiology of bone: Steric modelling and
            91.  Petta D, Armiento AR, Grijpma D,  et al., 2018, 3D
               bioprinting of a hyaluronan bioink through enzymatic-and   scanning  transmission  electron  microscopy  of  collagen-
               visible light-crosslinking. Biofabrication, 10: 044104.   mineral structure. J R Soc Interface, 9: 1774–1786.
                                                                  https://doi.org/10.1098/rsif.2011.0880
               https://doi.org/10.1088/1758-5090/aadf58
                                                               103. Włodarczyk-Biegun MK, Del Campo A, 2017, 3D bioprinting
            92.  Thakur A, Jaiswal MK, Peak, CW,  et al., 2016, Injectable
               shear-thinning nanoengineered hydrogels for stem cell   of structural proteins. Biomaterials, 134: 180–201.
               delivery. Nanoscale, 8: 12362–12372.               https://doi.org/10.1016/j.biomaterials.2017.04.019
               https://doi.org/10.1039/C6NR02299E              104. Gaudet ID, Shreiber DI, 2012, Characterization of
                                                                  methacrylated Type-I collagen as a dynamic, photoactive
            93.  Li C, Han X, Ma Z, et al., 2022, Engineered customizable
               microvessels for progressive vascularization in large   hydrogel. Biointerphases, 7: 25.
               regenerative implants. Adv Healthc Mater, 11: e2101836.      https://doi.org/10.1007/s13758-012-0025-y
               https://doi.org/10.1002/adhm.202101836          105. Ryan AJ, Gleeson JP, Matsiko A, et al., 2015, Effect of different
                                                                  hydroxyapatite incorporation methods on the structural and
            94.  Zhu J, 2010,  Bioactive  modification of  poly(ethylene
               glycol)  hydrogels  for  tissue  engineering.  Biomaterials,   biological properties of porous collagen scaffolds for bone
               31: 4639–4656.                                     repair. J Anat, 227: 732–745.
                                                                  https://doi.org/10.1111/joa.12262
               https://doi.org/10.1016/j.biomaterials.2010.02.044
                                                               106. Murphy CM, Matsiko A, Haugh MG,  et  al., 2012,
            95.  Aisenbrey EA, Bryant S, 2016, Mechanical loading inhibits
               hypertrophy in chondrogenically differentiating hmscs   Mesenchymal stem cell fate is regulated by the composition
               within a biomimetic hydrogel. J Mater Chem B, 4: 3562–3574.   and mechanical properties of collagen-glycosaminoglycan
                                                                  scaffolds. J Mech Behav Biomed Mater, 11: 53–62.
               https://doi.org.10.1039/C6TB00006A
                                                                  https://doi.org/10.1016/j.jmbbm.2011.11.009
            96.  Highley CB, Rodell CB, Burdick JA, 2015, Direct 3D printing
               of shear-thinning hydrogels into self-healing hydrogels. Adv   107. Muthusamy S, Kannan S, Lee M, et al., 2021, 3D bioprinting
               Mater, 27: 5075–5079.                              and microscale organization of vascularized tissue
                                                                  constructs using collagen-based bioink. Biotechnol Bioeng,
               https://doi.org/10.1002/adma.201501234             118: 3150–3163.
            97.  Rodell CB, Kaminski AL, Burdick JA, 2013, Rational design      https://doi.org/10.1002/bit.27838
               of network properties in guest-host assembled and shear-
               thinning hyaluronic acid hydrogels.  Biomacromolecules,   108. Hsu S, Jamieson AM, 1993, Viscoelastic behaviour at the
               14: 4125–4134.                                     thermal sol-gel transition of gelatin. Polymer, 34: 2602–2608.
                                                                  https://doi.org/10.1016/0032-3861(93)90596-3
               https://doi.org/10.1021/bm401280z
                                                               109. Zhang J, Qiao C, Ma X, et al., 2017, Effect of salts on the
            98.  Jlab C, Yza B, Jeabd E, et al., 2021, Bioactive nanoparticle
               reinforced alginate/gelatin bioink for the maintenance   thermal stability of physically crosslinked gelatin hydrogels.
               of stem cell stemness.  Mater Sci Eng C Mater Biol Appl,   Polym Korea, 41: 702–708.
               126: 112193.                                       https://doi.org/10.7317/pk.2017.41.4.702
               https://doi.org/10.1016/j.msec.2021.112193      110. Van Den Bulcke AI, Bogdanov B, De Rooze N, et al., 2000,

            Volume 9 Issue 4 (2023)                        431                         https://doi.org/10.18063/ijb.740
   434   435   436   437   438   439   440   441   442   443   444