Page 435 - IJB-9-4
P. 435

International Journal of Bioprinting                                  3D bioprinting of artificial blood vessel


               surgery: A systematic review and meta-analysis of randomized   a sheep model. J Thorac Cardiovasc Surg, 153: 924–932.
               controlled trials. Eur J Cardiovasc Nurs, Online ahead of print:      https://doi.org/10.1016/j.jtcvs.2016.10.066
               zvac028.
                                                               13.  Habib MA, Khoda B, 2022, Rheological analysis of bio-ink
               https://doi.org/10.1093/eurjcn/zvac028
                                                                  for 3D bio-printing processes. J Manuf Process, 76: 708–718.
            3.   Laschke MW, Menger MD, 2012, Vascularization in tissue      https://doi.org/10.1016/j.jmapro.2022.02.048
               engineering: Angiogenesis versus inosculation.  Eur Surg
               Res, 48: 85–92.                                 14.  Schwab A, Levato R, D’Este M,  et al., 2020, Printability
                                                                  and shape fidelity of bioinks in 3D bioprinting. Chem Rev,
               https://doi.org/10.1159/000336876
                                                                  120: 11028–11055.
            4.   Lopes SV, Collins MN, Reis RL, et al., 2021, Vascularization
               approaches in tissue engineering: Recent developments      https://doi.org/10.1021/acs.chemrev.0c00084
               on evaluation tests and modulation. ACS Appl Bio Mater,   15.  GhavamiNejad A, Ashammakhi N, Wu XY,  et al., 2020,
               4: 2941–2956.                                      Crosslinking strategies for 3D bioprinting of polymeric
                                                                  hydrogels. Small, 16: e2002931.
               https://doi.org/10.1021/acsabm.1c00051
            5.   Datta SK, Tumilowicz JJ, Trentin JJ, 1993, Lysis of human      https://doi.org/10.1002/smll.202002931
               arterial smooth muscle cells infected with herpesviridae   16.  Olayanju A, Miller AF, Ansari T, et al., 2021, Self-assembling
               by peripheral blood mononuclear cells: Implications for   Peptide Hydrogels-Peptigels® as a Platform for Hepatic
               atherosclerosis. Viral Immunol, 6: 153–160.        Organoid Culture. bioRxiv, preprint.
               https://doi.org/10.1089/vim.1993.6.153             https://doi.org/10.1101/2021.03.01.433333
            6.   Wang D, Xu Y, Li Q, et al., 2020, Artificial small-diameter   17.  Wang Y, Li J, Li Y,  et al., 2021, Biomimetic bioinks of
               blood vessels: Materials, fabrication, surface modification,   nanofibrillar polymeric hydrogels for 3D bioprinting. Nano
               mechanical properties, and bioactive functionalities. J Mater   Today, 39: 101180.
               Chem B, 8: 1801–1822.
                                                                  https://doi.org/10.1016/j.nantod.2021.101180
               https://doi.org/10.1039/c9tb01849b
                                                               18.  Jia J, Richards DJ, Pollard S, et al., 2014, Engineering alginate
            7.   Kaplan  J,  Wagner  R,  White  LE,  et al.,  2021,  Recurrent   as bioink for bioprinting. Acta Biomater, 10: 4323–4331.
               brachial artery aneurysm repair in a child managed with
               Gore-Tex conduit reinforcement.  J  Vasc Surg Cases  Innov      https://doi.org/10.1016/j.actbio.2014.06.034
               Tech, 7: 295–297.                               19.  Jang J, Kim TG, Kim BS, et al., 2016, Tailoring mechanical
               https://doi.org/10.1016/j.jvscit.2020.12.023       properties of decellularized extracellular matrix bioink by
                                                                  Vitamin B2-induced photo-crosslinking.  Acta Biomater,
            8.   Ferrari G, Balasubramanian P, Tubaldi E,  et al., 2019,   33: 88–95.
               Experiments on dynamic behaviour of a Dacron aortic graft
               in a mock circulatory loop. J Biomech, 86: 132–140.      https://doi.org/10.1016/j.actbio.2016.01.013
               https://doi.org/10.1016/j.jbiomech.2019.01.053  20.  Lee H, Han W, Kim H, et al., 2017, Development of liver
                                                                  decellularized extracellular matrix bioink for three-
            9.   Careddu  L,  Petridis  FD,  Angeli  E,  et al.,  2019,  Dacron   dimensional  cell  printing-based  liver  tissue  engineering.
               conduit for extracardiac total cavopulmonary anastomosis:   Biomacromolecules, 18: 1229–1237.
               A word of caution. Heart Lung Circ, 28:1872–1880.
                                                                  https://doi.org/10.1021/acs.biomac.6b01908
               https://doi.org/10.1016/j.hlc.2018.11.005
                                                               21.  Lee J, Oh SJ, An SH, et al., 2020, Machine learning-based
            10.  Zhang  F,  Xie  Y,  Celik  H,  et al.,  2019,  Engineering  small-  design strategy for 3D printable bioink: Elastic modulus and
               caliber vascular grafts from collagen filaments and   yield stress determine printability. Biofabrication, 12: 035018.
               nanofibers with comparable mechanical properties to native
               vessels. Biofabrication, 11: 035020.               https://doi.org/10.1088/1758-5090/ab8707
               https://doi.org/10.1088/1758-5090/ab15ce        22.  Kuang H, Wang Y, Shi Y,  et al., 2020, Construction and
                                                                  performance evaluation of Hep/silk-PLCL composite
            11.  Biazar E, Najafi SM, Heidari KS, et al., 2018, 3D bio-printing   nanofiber  small-caliber  artificial  blood  vessel  graft.
               technology for body tissues and organs regeneration. J Med
               Eng Technol, 42: 187–202.                          Biomaterials, 259: 120288.
                                                                  https://doi.org/10.1016/j.biomaterials.2020.120288
               https://doi.org/10.1080/03091902.2018.1457094
                                                               23.  Wei LN, Chee KC, Shen YF, et al., 2019, Print me an organ!
            12.  Fukunishi T, Best CA, Sugiura T,  et al., 2017, Preclinical
               study of patient-specific cell-free nanofiber tissue-  Why we are not there yet. Pro Polym Sci, 97: 101145.
               engineered vascular grafts using 3-dimensional printing in      https://doi.org/10.1016/j.progpolymsci.2019.101145


            Volume 9 Issue 4 (2023)                        427                         https://doi.org/10.18063/ijb.740
   430   431   432   433   434   435   436   437   438   439   440