Page 435 - IJB-9-4
P. 435
International Journal of Bioprinting 3D bioprinting of artificial blood vessel
surgery: A systematic review and meta-analysis of randomized a sheep model. J Thorac Cardiovasc Surg, 153: 924–932.
controlled trials. Eur J Cardiovasc Nurs, Online ahead of print: https://doi.org/10.1016/j.jtcvs.2016.10.066
zvac028.
13. Habib MA, Khoda B, 2022, Rheological analysis of bio-ink
https://doi.org/10.1093/eurjcn/zvac028
for 3D bio-printing processes. J Manuf Process, 76: 708–718.
3. Laschke MW, Menger MD, 2012, Vascularization in tissue https://doi.org/10.1016/j.jmapro.2022.02.048
engineering: Angiogenesis versus inosculation. Eur Surg
Res, 48: 85–92. 14. Schwab A, Levato R, D’Este M, et al., 2020, Printability
and shape fidelity of bioinks in 3D bioprinting. Chem Rev,
https://doi.org/10.1159/000336876
120: 11028–11055.
4. Lopes SV, Collins MN, Reis RL, et al., 2021, Vascularization
approaches in tissue engineering: Recent developments https://doi.org/10.1021/acs.chemrev.0c00084
on evaluation tests and modulation. ACS Appl Bio Mater, 15. GhavamiNejad A, Ashammakhi N, Wu XY, et al., 2020,
4: 2941–2956. Crosslinking strategies for 3D bioprinting of polymeric
hydrogels. Small, 16: e2002931.
https://doi.org/10.1021/acsabm.1c00051
5. Datta SK, Tumilowicz JJ, Trentin JJ, 1993, Lysis of human https://doi.org/10.1002/smll.202002931
arterial smooth muscle cells infected with herpesviridae 16. Olayanju A, Miller AF, Ansari T, et al., 2021, Self-assembling
by peripheral blood mononuclear cells: Implications for Peptide Hydrogels-Peptigels® as a Platform for Hepatic
atherosclerosis. Viral Immunol, 6: 153–160. Organoid Culture. bioRxiv, preprint.
https://doi.org/10.1089/vim.1993.6.153 https://doi.org/10.1101/2021.03.01.433333
6. Wang D, Xu Y, Li Q, et al., 2020, Artificial small-diameter 17. Wang Y, Li J, Li Y, et al., 2021, Biomimetic bioinks of
blood vessels: Materials, fabrication, surface modification, nanofibrillar polymeric hydrogels for 3D bioprinting. Nano
mechanical properties, and bioactive functionalities. J Mater Today, 39: 101180.
Chem B, 8: 1801–1822.
https://doi.org/10.1016/j.nantod.2021.101180
https://doi.org/10.1039/c9tb01849b
18. Jia J, Richards DJ, Pollard S, et al., 2014, Engineering alginate
7. Kaplan J, Wagner R, White LE, et al., 2021, Recurrent as bioink for bioprinting. Acta Biomater, 10: 4323–4331.
brachial artery aneurysm repair in a child managed with
Gore-Tex conduit reinforcement. J Vasc Surg Cases Innov https://doi.org/10.1016/j.actbio.2014.06.034
Tech, 7: 295–297. 19. Jang J, Kim TG, Kim BS, et al., 2016, Tailoring mechanical
https://doi.org/10.1016/j.jvscit.2020.12.023 properties of decellularized extracellular matrix bioink by
Vitamin B2-induced photo-crosslinking. Acta Biomater,
8. Ferrari G, Balasubramanian P, Tubaldi E, et al., 2019, 33: 88–95.
Experiments on dynamic behaviour of a Dacron aortic graft
in a mock circulatory loop. J Biomech, 86: 132–140. https://doi.org/10.1016/j.actbio.2016.01.013
https://doi.org/10.1016/j.jbiomech.2019.01.053 20. Lee H, Han W, Kim H, et al., 2017, Development of liver
decellularized extracellular matrix bioink for three-
9. Careddu L, Petridis FD, Angeli E, et al., 2019, Dacron dimensional cell printing-based liver tissue engineering.
conduit for extracardiac total cavopulmonary anastomosis: Biomacromolecules, 18: 1229–1237.
A word of caution. Heart Lung Circ, 28:1872–1880.
https://doi.org/10.1021/acs.biomac.6b01908
https://doi.org/10.1016/j.hlc.2018.11.005
21. Lee J, Oh SJ, An SH, et al., 2020, Machine learning-based
10. Zhang F, Xie Y, Celik H, et al., 2019, Engineering small- design strategy for 3D printable bioink: Elastic modulus and
caliber vascular grafts from collagen filaments and yield stress determine printability. Biofabrication, 12: 035018.
nanofibers with comparable mechanical properties to native
vessels. Biofabrication, 11: 035020. https://doi.org/10.1088/1758-5090/ab8707
https://doi.org/10.1088/1758-5090/ab15ce 22. Kuang H, Wang Y, Shi Y, et al., 2020, Construction and
performance evaluation of Hep/silk-PLCL composite
11. Biazar E, Najafi SM, Heidari KS, et al., 2018, 3D bio-printing nanofiber small-caliber artificial blood vessel graft.
technology for body tissues and organs regeneration. J Med
Eng Technol, 42: 187–202. Biomaterials, 259: 120288.
https://doi.org/10.1016/j.biomaterials.2020.120288
https://doi.org/10.1080/03091902.2018.1457094
23. Wei LN, Chee KC, Shen YF, et al., 2019, Print me an organ!
12. Fukunishi T, Best CA, Sugiura T, et al., 2017, Preclinical
study of patient-specific cell-free nanofiber tissue- Why we are not there yet. Pro Polym Sci, 97: 101145.
engineered vascular grafts using 3-dimensional printing in https://doi.org/10.1016/j.progpolymsci.2019.101145
Volume 9 Issue 4 (2023) 427 https://doi.org/10.18063/ijb.740

