Page 436 - IJB-9-4
P. 436

International Journal of Bioprinting                                  3D bioprinting of artificial blood vessel


            24.  Syedain ZH, Prunty A, Li J, et al., 2021, Evaluation of the   of  gelatin-alginate  composite  bioink  printability
               probe burst test as a measure of strength for a biologically-  using rheological parameters: A  systematic approach.
               engineered vascular graft.  J  Mech Behav Biomed Mater,   Biofabrication, 10: 034106.
               119: 104527.
                                                                  https://doi.org/10.1088/1758-5090/aacdc7
               https://doi.org/10.1016/j.jmbbm.2021.104527     35.  Zhang S, Li G, Man J, et al., 2020, Fabrication of microspheres
            25.  Konig G, McAllister TN, Dusserre N, et al., 2009, Mechanical   from high-viscosity bioink using a novel microfluidic-based
               properties of completely autologous human tissue   3D bioprinting nozzle. Micromachines (Basel), 11: 681.
               engineered blood vessels compared to human saphenous      https://doi.org/10.3390/mi11070681
               vein and mammary artery. Biomaterials, 30: 1542–1550.
                                                               36.  Skardal A, Zhang J, Prestwich GD, 2010, Bioprinting vessel-
               https://doi.org/10.1016/j.biomaterials.2008.11.011  like constructs using hyaluronan hydrogels crosslinked with
            26.  Matthew JM, Richard PT, Yang NJ, et al., 2022, Bioengineering   tetrahedral polyethylene glycol tetracrylates.  Biomaterials,
               artificial blood vessels from  natural  materials.  Trends   31: 6173–6181.
               Biotechnol, 40: 693–707.                           https://doi.org/10.1016/j.biomaterials.2010.04.045
               https://doi.org/10.1016/j.tibtech.2021.11.003   37.  Liu W, Heinrich MA, Zhou Y,  et al., 2017, Extrusion
            27.  Zandi N, Sani ES, Mostafavi E, et al., 2021, Nanoengineered   bioprinting of shear-thinning gelatin methacryloyl bioinks.
               shear-thinning and bioprintable hydrogel as a versatile   Adv Healthc Mater, 6: 1601451.
               platform for biomedical applications.  Biomaterials,      https://doi.org/10.1002/adhm.201601451
               267: 120476.
                                                               38.  Lim W, Kim GJ, Kim HW, et al., 2020, Kappa-carrageenan-
               https://doi.org/10.1016/j.biomaterials.2020.120476  based dual crosslinkable bioink for extrusion type
            28.  Yoneyama T, Ito M, Sugihara K, et al., 2000, Small diameter   bioprinting. Polymers (Basel), 12: 2377.
               vascular prosthesis with a nonthrombogenic phospholipid      https://doi.org/10.3390/polym12102377
               polymer surface: Preliminary study of a new concept
               for functioning in the absence of pseudo-or neointima   39.  Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
               formation. Artif Organs, 24: 23–28.                bioprinting of heterogeneous 3D tissue constructs using
                                                                  low‐viscosity bioink. Adv Mater, 28: 677–684.
               https://doi.org/10.1046/j.1525-1594.2000.06433.x
                                                                  https://doi.org/10.1002/adma.201503310
            29.  Garcia-Cruz MR, Postma A, Frith JE, et al., 2021, Printability
               and bio-functionality of a shear thinning methacrylated   40.  Zhou K, Sun Y, Yang J,  et al., 2022, Hydrogels for 3D
               xanthan-gelatin  composite  bioink.  Biofabrication,   embedded  bioprinting:  A  focused  review  on  bioinks  and
               13: 035023.                                        support baths. J Mater Chem B, 10: 1897–1907.
               https://doi.org/10.1088/1758-5090/abec2d           https://doi.org/10.1039/d1tb02554f
            30.  Amorim PA, D’Ávila MA, Anand R, et al., 2021, Insights on   41.  Hoch E, Tovar GE, Borchers K, 2014, Bioprinting of artificial
               shear rheology of inks for extrusion-based 3D bioprinting.   blood vessels: current approaches towards a demanding
               Bioprinting, 22: e00129.                           goal. Eur J Cardiothorac Surg, 46: 767–778.
               https://doi.org/10.1016/j.bprint.2021.e00129       https://doi.org/10.1093/ejcts/ezu242
            31.  Bae M, Hwang DW, Ko MK, et al. 2021, Neural stem cell   42.  Xing HA, Yz A, Ms A, et al., 2021, A highly biocompatible
               delivery  using  brain-derived  tissue-specific  bioink  for   bio-ink for 3D hydrogel scaffolds fabrication in the presence
               recovering from traumatic brain injury.  Biofabrication,   of living cells by two-photon polymerization.  Eur Polym,
               13: 044110.                                        153: 110505.
                                                                  https://doi.org/10.1016/j.eurpolymj.2021.110505
               https://doi.org/10.1088/1758-5090/ac293f
                                                               43.  Billiet T, Gevaert E, De Schryver T,  et al., 2014, The 3D
            32.  Diamantides N, Dugopolski C, Blahut E, et al., 2019, High
               density cell seeding affects the rheology and printability of   printing of gelatin methacrylamide cell-laden tissue-
               collagen bioinks. Biofabrication, 11: 045016.      engineered constructs with high cell viability. Biomaterials,
                                                                  35: 49–62.
               https://doi.org/10.1088/1758-5090/ab3524
                                                                  https://doi.org/10.1016/j.biomaterials.2013.09.078
            33.  Xu C, Zhang M, Huang Y,  et al., 2014, Study of droplet   44.  Wang Z, Kumar H, Tian Z,  et al., 2018, Visible light
               formation process during drop-on-demand inkjetting of   photoinitiation of cell-adhesive gelatin methacryloyl
               living cell-laden bioink. Langmuir, 30: 9130–9138.
                                                                  hydrogels for stereolithography 3D bioprinting. ACS Appl
               https://doi.org/10.1021/la501430x                  Mater Interfaces, 10: 26859–26869.
            34.  Gao T, Gillispie GJ, Copus JS,  et al., 2018, Optimization      https://doi.org/10.1021/acsami.8b06607


            Volume 9 Issue 4 (2023)                        428                         https://doi.org/10.18063/ijb.740
   431   432   433   434   435   436   437   438   439   440   441