Page 441 - IJB-9-4
P. 441
International Journal of Bioprinting 3D bioprinting of artificial blood vessel
https://doi.org/10.1016/j.biomaterials.2011.01.057 https://doi.org/10.1088/1758-5082/4/3/035005
131. Choudhury D, Tun HW, Wang T, et al., 2018, Organ-derived 142. Budharaju H, Zennifer A, Sethuraman S, et al., 2022,
decellularized extracellular matrix: A game changer for Designer DNA biomolecules as a defined biomaterial for 3D
bioink manufacturing? Trends Biotechnol, 36: 787–805. bioprinting applications. Mater Horiz, 9: 1141–1166.
https://doi.org/10.1016/j.tibtech.2018.03.003 https://doi.org/10.1039/d1mh01632f
132. Li C, Zheng Z, Jia J, et al., 2022, Preparation and 143. Nagahara S, Matsuda TJ, 1996, Hydrogel formation via
characterization of photocurable composite extracellular hybridization of oligonucleotides derivatized in water-
matrix-methacrylated hyaluronic acid bioink. J Mater Chem soluble vinyl polymers. Polym Gels Netw, 4: 111–127.
B, 10: 4242–4253. https://doi.org/10.1016/0966-7822(96)00001-9
https://doi.org/10.1039/d2tb00548d 144. Gelinsky M, 2018, Biopolymer Hydrogel Bioinks.
133. Pati F, Jang J, Ha DH, et al., 2014, Printing three-dimensional Netherlands: Elsevier. p.125–136.
tissue analogues with decellularized extracellular matrix https://doi.org/10.1016/B978-0-08-101103-4.00008-9
bioink. Nat Commun, 5: 3935.
145. Wu Y, Li C, Boldt F, et al., 2014, Programmable protein-
https://doi.org/10.1038/ncomms4935 DNA hybrid hydrogels for the immobilization and
134. Wolf MT, Daly KA, Brennan-Pierce EP, et al., 2012, A release of functional proteins. Chem Commun (Camb),
hydrogel derived from decellularized dermal extracellular 50: 14620–1462.
matrix. Biomaterials, 33: 7028–7038. https://doi.org/10.1039/c4cc07144a
https://doi.org/10.1016/j.biomaterials.2012.06.051 146. Li C, Faulkner-Jones A, Dun AR, et al., 2015, Rapid
135. Bilozur ME, Hay ED, 1988, Neural crest migration in formation of a supramolecular polypeptide-DNA hydrogel
3D extracellular matrix utilizes laminin, fibronectin, or for in situ three-dimensional multilayer bioprinting. Angew
collagen. Dev Biol, 125: 19–33. Chem Int Ed Engl, 54: 3957–3961.
https://doi.org/10.1016/0012-1606(88)90055-3 https://doi.org/10.1002/anie.201411383
136. Asakura A, Komaki M, Rudnicki M, 2001, Muscle satellite 147. Yang L, Dun AR, Martin KJ, et al., 2012, Secretory vesicles
cells are multipotential stem cells that exhibit myogenic, are preferentially targeted to areas of low molecular SNARE
osteogenic, and adipogenic differentiation. Differentiation, density. PLoS One, 7: e49514.
68: 245–253. https://doi.org/10.1371/journal.pone.0049514
https://doi.org/10.1046/j.1432-0436.2001.680412.x 148. Pérez-Ortín JE, Tordera V, Chávez S, 2019, Homeostasis in
137. Czyz J, Wobus A, 2001, Embryonic stem cell differentiation: the Central Dogma of molecular biology: The importance of
the role of extracellular factors. Differentiation, 68: 167–174. mRNA instability. RNA Biol, 16: 1659–1666.
https://doi.org/10.1046/j.1432-0436.2001.680404.x https://doi.org/10.1080/15476286.2019.1655352
138. Swaminathan S, Hamid Q, Sun W, et al., 2019, Bioprinting 149. Park N, Kahn JS, Rice EJ, et al., 2009, High-yield cell-free
of 3D breast epithelial spheroids for human cancer models. protein production from P-gel. Nat Protoc, 4: 1759–1770.
Biofabrication, 11: 025003. https://doi.org/10.1038/nprot.2009.174
https://doi.org/10.1088/1758-5090/aafc49 150. De Melo BA, Jodat YA, Cruz EM, et al., 2020, Strategies to
139. Schmidt SK, Schmid R, Arkudas A, et al., 2019, Tumor cells use fibrinogen as bioink for 3D bioprinting fibrin-based soft
develop defined cellular phenotypes after 3D-bioprinting in and hard tissues. Acta Biomater, 117: 60–76.
different bioinks. Cells, 8: 1295. https://doi.org/10.1016/j.actbio.2020.09.024
https://doi.org/10.3390/cels8101295l 151. Zhao N, Suzuki A, Zhang X, et al., 2019, Dual aptamer-
140. Shin YJ, Shafranek RT, Tsui JH, et al., 2021, 3D bioprinting functionalized in situ injectable fibrin hydrogel for
of mechanically tuned bioinks derived from cardiac promotion of angiogenesis via codelivery of vascular
decellularized extracellular matrix. Acta Biomaterialia, endothelial growth factor and platelet-derived growth
119: 75–88. factor-BB. ACS Appl Mater Interfaces, 11: 18123–18132.
https://doi.org/10.1021/acsami.9b02462
https://doi.org/10.1016/j.actbio.2020.11.006
152. Murphy KC, Whitehead J, Zhou D, et al., 2017, Engineering
141. Hockaday LA, Kang KH, Colangelo NW, et al., 2012, Rapid
3D printing of anatomically accurate and mechanically fibrin hydrogels to promote the wound healing potential of
heterogeneous aortic valve hydrogel scaffolds. Biofabrication, mesenchymal stem cell spheroids. Acta Biomater, 64: 176–186.
4: 035005. https://doi.org/10.1016/j.actbio.2017.10.007
Volume 9 Issue 4 (2023) 433 https://doi.org/10.18063/ijb.740

