Page 441 - IJB-9-4
P. 441

International Journal of Bioprinting                                  3D bioprinting of artificial blood vessel


               https://doi.org/10.1016/j.biomaterials.2011.01.057     https://doi.org/10.1088/1758-5082/4/3/035005
            131. Choudhury D, Tun HW, Wang T, et al., 2018, Organ-derived   142. Budharaju H, Zennifer A, Sethuraman S,  et al., 2022,
               decellularized extracellular matrix: A  game changer for   Designer DNA biomolecules as a defined biomaterial for 3D
               bioink manufacturing? Trends Biotechnol, 36: 787–805.   bioprinting applications. Mater Horiz, 9: 1141–1166.
               https://doi.org/10.1016/j.tibtech.2018.03.003      https://doi.org/10.1039/d1mh01632f
            132. Li C, Zheng Z, Jia J,  et al., 2022, Preparation and   143. Nagahara S, Matsuda TJ, 1996, Hydrogel formation via
               characterization of photocurable composite extracellular   hybridization of oligonucleotides derivatized in water-
               matrix-methacrylated hyaluronic acid bioink. J Mater Chem   soluble vinyl polymers. Polym Gels Netw, 4: 111–127.
               B, 10: 4242–4253.                                  https://doi.org/10.1016/0966-7822(96)00001-9
               https://doi.org/10.1039/d2tb00548d              144. Gelinsky M, 2018, Biopolymer Hydrogel Bioinks.
            133. Pati F, Jang J, Ha DH, et al., 2014, Printing three-dimensional   Netherlands: Elsevier. p.125–136.
               tissue  analogues  with  decellularized  extracellular  matrix      https://doi.org/10.1016/B978-0-08-101103-4.00008-9
               bioink. Nat Commun, 5: 3935.
                                                               145. Wu Y, Li C, Boldt F,  et al., 2014, Programmable protein-
               https://doi.org/10.1038/ncomms4935                 DNA hybrid hydrogels for the immobilization and
            134. Wolf MT, Daly KA, Brennan-Pierce EP,  et al., 2012, A   release  of  functional  proteins.  Chem  Commun  (Camb),
               hydrogel derived from decellularized dermal extracellular   50: 14620–1462.
               matrix. Biomaterials, 33: 7028–7038.               https://doi.org/10.1039/c4cc07144a
               https://doi.org/10.1016/j.biomaterials.2012.06.051  146. Li C, Faulkner-Jones A, Dun AR,  et al., 2015, Rapid
            135. Bilozur  ME,  Hay ED, 1988,  Neural crest  migration  in   formation of a supramolecular polypeptide-DNA hydrogel
               3D extracellular matrix utilizes laminin, fibronectin, or   for in situ three-dimensional multilayer bioprinting. Angew
               collagen. Dev Biol, 125: 19–33.                    Chem Int Ed Engl, 54: 3957–3961.
               https://doi.org/10.1016/0012-1606(88)90055-3       https://doi.org/10.1002/anie.201411383
            136. Asakura A, Komaki M, Rudnicki M, 2001, Muscle satellite   147. Yang L, Dun AR, Martin KJ, et al., 2012, Secretory vesicles
               cells are multipotential stem cells that exhibit myogenic,   are preferentially targeted to areas of low molecular SNARE
               osteogenic, and adipogenic differentiation.  Differentiation,   density. PLoS One, 7: e49514.
               68: 245–253.                                       https://doi.org/10.1371/journal.pone.0049514
               https://doi.org/10.1046/j.1432-0436.2001.680412.x  148. Pérez-Ortín JE, Tordera V, Chávez S, 2019, Homeostasis in
            137. Czyz J, Wobus A, 2001, Embryonic stem cell differentiation:   the Central Dogma of molecular biology: The importance of
               the role of extracellular factors. Differentiation, 68: 167–174.   mRNA instability. RNA Biol, 16: 1659–1666.
               https://doi.org/10.1046/j.1432-0436.2001.680404.x     https://doi.org/10.1080/15476286.2019.1655352
            138. Swaminathan S, Hamid Q, Sun W, et al., 2019, Bioprinting   149. Park N, Kahn JS, Rice EJ, et al., 2009, High-yield cell-free
               of 3D breast epithelial spheroids for human cancer models.   protein production from P-gel. Nat Protoc, 4: 1759–1770.
               Biofabrication, 11: 025003.                        https://doi.org/10.1038/nprot.2009.174
               https://doi.org/10.1088/1758-5090/aafc49        150. De Melo BA, Jodat YA, Cruz EM, et al., 2020, Strategies to
            139. Schmidt SK, Schmid R, Arkudas A, et al., 2019, Tumor cells   use fibrinogen as bioink for 3D bioprinting fibrin-based soft
               develop defined cellular phenotypes after 3D-bioprinting in   and hard tissues. Acta Biomater, 117: 60–76.
               different bioinks. Cells, 8: 1295.                 https://doi.org/10.1016/j.actbio.2020.09.024
               https://doi.org/10.3390/cels8101295l            151. Zhao N,  Suzuki  A, Zhang  X,  et al., 2019,  Dual  aptamer-
            140. Shin YJ, Shafranek RT, Tsui JH, et al., 2021, 3D bioprinting   functionalized  in situ injectable fibrin hydrogel for
               of mechanically tuned bioinks derived from cardiac   promotion of angiogenesis via codelivery of vascular
               decellularized  extracellular  matrix.  Acta Biomaterialia,   endothelial  growth  factor  and  platelet-derived  growth
               119: 75–88.                                        factor-BB. ACS Appl Mater Interfaces, 11: 18123–18132.
                                                                  https://doi.org/10.1021/acsami.9b02462
               https://doi.org/10.1016/j.actbio.2020.11.006
                                                               152. Murphy KC, Whitehead J, Zhou D, et al., 2017, Engineering
            141. Hockaday LA, Kang KH, Colangelo NW, et al., 2012, Rapid
               3D printing of anatomically accurate and mechanically   fibrin hydrogels to promote the wound healing potential of
               heterogeneous aortic valve hydrogel scaffolds. Biofabrication,   mesenchymal stem cell spheroids. Acta Biomater, 64: 176–186.
               4: 035005.                                         https://doi.org/10.1016/j.actbio.2017.10.007



            Volume 9 Issue 4 (2023)                        433                         https://doi.org/10.18063/ijb.740
   436   437   438   439   440   441   442   443   444   445   446