Page 443 - IJB-9-4
P. 443

International Journal of Bioprinting                                  3D bioprinting of artificial blood vessel


               https://doi.org/10.1016/j.biomaterials.2016.07.038     https://doi.org/10.1016/j.bprint.2022.e00244
            176. Zhang Y, Yu Y, Akkouch A,  et al., 2015,  In vitro study   187. Arai K, Iwanaga S, Toda H, et al., 2011, Three-dimensional
               of directly bioprinted perfusable vasculature conduits.   inkjet biofabrication based on designed images.
               Biomater Sci, 3: 134–143.                          Biofabrication, 3: 034113.
               https://doi.org/10.1039/c4bm00234b                 https://doi.org/10.1088/1758-5082/3/3/034113
            177. Jang  EH,  Kim  JH,  Lee  JH,  et al.,  2020,  Enhanced   188. Ng WL, Huang X, Shkolnikov V, et al., 2021, Controlling
               biocompatibility of multi-layered, 3D bio-printed artificial   droplet impact velocity and droplet volume: Key factors to
               vessels composed of autologous mesenchymal stem cells.   achieving high cell viability in sub-nanoliter droplet-based
               Polymers (Basel), 12: 538.                         bioprinting. Int J Bioprint, 8: 424.
               https://doi.org/10.3390/polym12030538              https://doi.org/10.18063/ijb.v8i1.424
            178. Karen D, Yuki H, Kazuomori KL, et al., 2016, Dual-stage   189. Lee JM, Zhou MM, Chen YW, et al., 2020, Vat polymerization-
               crosslinking  of  a  gel-phase  bioink  improves  cell  viability   based bioprinting-process, materials, applications and
               and homogeneity for 3D bioprintin. Adv Healthcare Mater,   regulatory challenges. Biofabrication, 12: 022001.
               5: 2488–2492.
                                                                  https://doi.org/10.1088/1758-5090/ab6034
               https://doi.org/10.1002/adhm.201600636
                                                               190. Li W, Mille LS, Robledo JA, et al., 2020, Recent advances
            179. Tao J, Jose GM, Flores-Torres S,  et al., 2019, Extrusion   in formulating and processing biomaterial inks for vat
               bioprinting of soft materials: An emerging technique for   polymerization-based 3D  printing.  Adv Healthc Mater,  9:
               biological model fabrication. Appl Phys Rev, 6: 011310.   e2000156.
               https://doi.org/10.1063/1.5059393                  https://doi.org/10.1002/adhm.202000156
            180. Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D Bioprinting:   191. Joanna I, Marina V, Alessia P, et al., 2021, Alginate-based
               From benches to translational applications.  Small, 15:   tissue-specific bioinks for multi-material 3D-bioprinting
               e1805510.                                          of pancreatic islets and blood vessels: A  step towards
                                                                  vascularized pancreas grafts. Bioprinting, 24: e00163.
               https://doi.org/10.1002/smll.201805510
                                                                  https://doi.org/10.1016/j.bprint.2021.e00163
            181. Kalyani S, Kawal R, 2022, Could 3D extrusion bioprinting
               serve to be a real alternative to organ transplantation in the   192. Costa PF, Hugo JA, John EAL, et al., 2017, Mimicking arterial
               future? Ann 3D Print Med, 7: 100066.               thrombosis in a 3D-printed microfluidic  in vitro vascular
                                                                  model based on computed tomography angiography data.
               https://doi.org/10.1016/j.stlm.2022.100066
                                                                  Lab Chip, 17: 2785–2792.
            182. Norotte C, Marga FS, Niklason LE, et al., 2009, Scaffold-free
               vascular tissue engineering using bioprinting. Biomaterials,      https://doi.org/10.1039/C7LC00202E
               30: 5910–5917.                                  193. Han X, Courseaus J, Khamassi J,  et al., 2018, Optimized
                                                                  vascular network by stereolithography for tissue engineered
               https://doi.org/10.1016/j.biomaterials.2009.06.034
                                                                  skin. Int J Bioprint, 4: 134.
            183. Park SJ, Lee J, Jae WC, et al., 2021, Additive manufacturing
               of the core template for the fabrication of an artificial blood      https://doi.org/10.18063/IJB.v4i2.134
               vessel: The relationship between the extruded deposition   194. Bhatia SK, Sharma S, 2014, 3D-printed prosthetics roll off
               diameter and the filament/nozzle transition ratio. Mater Sci   the presses. Chem Eng Prog, 110: 28–33.
               Eng C, 118: 111406.
                                                               195. Wu W, DeConinck A, Lewis JA, 2011, Omnidirectional
               https://doi.org/10.1016/j.msec.2020.111406         printing of 3D microvascular networks.  Adv Mater, 23:
                                                                  H178–H183.
            184. Trujillo S, Seow M, Lueckgen A,  et al., 2021, Dynamic
               mechanical control of alginate-fibronectin hydrogels with      https://doi.org/10.1002/adma.201004625
               dual crosslinking: Covalent and ionic.  Polymers (Basel),   196. Hinton TJ, Jallerat Q, Palchesko RN,  et al., 2015, Three-
               13: 433.
                                                                  dimensional printing of complex biological structures by
               https://doi.org/10.3390/polym13030433              freeform reversible embedding of suspended hydrogels. Sci
                                                                  Adv, 1: e1500758.
            185. Li XD, Liu BX, Pei B,  et al., 2020, Inkjet bioprinting of
               biomaterials. Chem Rev, 120: 10793–10833.          https://doi.org/10.1126/sciadv.1500758
               https://doi.org/10.1021/acs.chemrev.0c00008     197. Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting
                                                                  of collagen to rebuild components of the human heart.
            186. Bogala MR, 2022, Three-dimensional (3D) printing of
               hydroxyapatite-based scaffolds: A  review.  Bioprinting, 28:   Science, 365: 482–487.
               e00244.                                            https://doi.org/10.1126/science.aav9051


            Volume 9 Issue 4 (2023)                        435                         https://doi.org/10.18063/ijb.740
   438   439   440   441   442   443   444   445   446   447   448