Page 437 - IJB-9-4
P. 437
International Journal of Bioprinting 3D bioprinting of artificial blood vessel
45. Deo KA, Singh KA, Peak CW, et al. 2020, Bioprinting 56. Yang Y, Beqaj S, Kemp P, et al., 2000, Stretch-induced
101: Design, fabrication, and evaluation of cell-laden 3D alternative splicing of serum response factor promotes
bioprinted scaffolds. Tissue Eng Part A, 26: 318–338. bronchial myogenesis and is defective in lung hypoplasia.
J Clin Invest, 106: 1321–1330.
https://doi.org/10.1089/ten.TEA.2019.0298
https://doi.org/10.1172/jci8893
46. Wu J, Hu C, Tang Z, et al., 2018, Tissue-engineered vascular
grafts: Balance of the four major requirements. Colloid 57. Sonam S, Sathe SR, Yim EK, et al., 2016, Cell contractility
Interface Sci Commun, 23: 34–44. arising from topography and shear flow determines human
https://doi.org/10.1016/j.colcom.2018.01.005 mesenchymal stem cell fate. Sci Rep, 6: 20415.
47. Sarkar S, Salacinski HJ, Hamilton G, et al., 2006, The https://doi.org/10.1038/srep20415
mechanical properties of infrainguinal vascular bypass 58. Liang Y, Zhen X, Wang K, et al., 2017, Folic acid attenuates
grafts: Their role in influencing patency. Eur J Vasc Endovasc cobalt chloride-induced pge2 production in huvecs via
Surg, 31: 627–636. the no/hif-1alpha/cox-2 pathway. Biochem Biophys Res
https://doi.org/10.1016/j.ejvs.2006.01.006 Commun, 490: 567–573.
48. Zhang Y, Yu Y, Ozbolat IT, 2013, Direct bioprinting of vessel- https://doi.org/10.1016/j.bbrc.2017.06.079
like tubular microfluidic channels. J Nanotechnol Eng Med, 59. Ogura Y, Sutterwala FS, Flavell RA, 2006, The inflammasome:
4: 020902. First line of the immune response to cell stress. Cell,
https://doi.org/10.1115/1.4024398 126: 659–662.
49. Liu Y, Li Z, Li J, et al., 2020, Stiffness-mediated mesenchymal https://doi.org/10.1016/j.cell.2006.08.002
stem cell fate decision in 3D-bioprinted hydrogels. Burns 60. Guilak F, Cohen DM, Estes BT, et al., 2009, Control of
Trauma, 8: tkaa029. stem cell fate by physical interactions with the extracellular
https://doi.org/10.1093/burnst/tkaa029 matrix. Cell Stem Cell, 5: 17–26.
50. Lin CH, Su JJ, Lee SY, et al. 2018, Stiffness modification https://doi.org/10.1016/j.stem.2009.06.016
of photopolymerizable gelatin-methacrylate hydrogels 61. Young AT, White OC, Daniele MA, 2020, Rheological
influences endothelial differentiation of human mesenchymal properties of coordinated physical gelation and chemical
stem cells. J Tissue Eng Regen Med, 12: 2099–2111. crosslinking in gelatin methacryloyl (GelMA) hydrogels.
https://doi.org/10.1002/term.2745 Macromol Biosci, 20: e2000183.
51. Ogle ME, Doron G, Levy MJ, et al., 2020, Hydrogel https://doi.org/10.1002/mabi.202000183
culture surface stiffness modulates mesenchymal stromal 62. Marga F, Jakab K, Khatiwala C, et al., 2012, Toward
cell secretome and alters senescence. Tissue Eng Part A, engineering functional organ modules by additive
26: 1259–1271. manufacturing. Biofabrication, 4: 022001.
https://doi.org/10.1089/ten.tea.2020.0030 https://doi.org/10.1088/1758-5082/4/2/022001
52. Engler AJ, Sen S, Sweeney HL, et al., 2006, Matrix elasticity 63. Gentile C, Lim KS, Vozzi G, 2021, Editorial: 3D bioprinting
directs stem cell lineage specification. Cell, 126: 677–689. of vascularized tissues for in vitro and in vivo applications.
https://doi.org/10.1016/j.cell.2006.06.044 Front Bioeng Biotechnol, 9: 754124.
53. Yi B, Shen Y, Tang H, et al., 2020, Stiffness of the aligned https://doi.org/10.3389/fbioe.2021.754124
fibers affects structural and functional integrity of the 64. Shinohara S, Kihara T, Sakai S, et al., 2013, Fabrication of
oriented endothelial cells. Acta Biomater, 108: 237–249. in vitro three-dimensional multilayered blood vessel model
https://doi.org/10.1016/j.actbio.2020.03.022 using human endothelial and smooth muscle cells and high-
strength PEG hydrogel. J Biosci Bioeng, 116: 231–234.
54. Liu P, Tu J, Wang W, et al., 2022, Effects of mechanical stress
stimulation on function and expression mechanism of https://doi.org/10.1016/j.jbiosc.2013.02.013
osteoblasts. Front Bioeng Biotechnol, 10: 830722.
65. Moore KH, Murphy HA, George EM, 2021, The glycocalyx:
https://doi.org/10.3389/fbioe.2022.830722 A central regulator of vascular function. Am J Physiol Regul
Integr Comp Physiol, 320: R508–R518.
55. Matthews BD, Overby DR, Mannix R, et al., 2006, Cellular
adaptation to mechanical stress: Role of integrins, Rho, https://doi.org/10.1152/ajpregu.00340.2020
cytoskeletal tension and mechanosensitive ion channels. 66. Xu Y, Hu Y, Liu C, et al., 2018, A novel strategy for creating
J Cell Sci, 119: 508–518.
tissue-engineered biomimetic blood vessels using 3D
https://doi.org/10.1242/jcs.02760 bioprinting technology. Materials (Basel), 11: 1581.
Volume 9 Issue 4 (2023) 429 https://doi.org/10.18063/ijb.740

