Page 437 - IJB-9-4
P. 437

International Journal of Bioprinting                                  3D bioprinting of artificial blood vessel


            45.  Deo KA, Singh KA, Peak CW,  et  al. 2020, Bioprinting   56.  Yang Y, Beqaj S, Kemp P,  et al., 2000, Stretch-induced
               101: Design, fabrication, and evaluation of cell-laden 3D   alternative splicing of  serum  response  factor promotes
               bioprinted scaffolds. Tissue Eng Part A, 26: 318–338.   bronchial myogenesis and is defective in lung hypoplasia.
                                                                  J Clin Invest, 106: 1321–1330.
               https://doi.org/10.1089/ten.TEA.2019.0298
                                                                  https://doi.org/10.1172/jci8893
            46.  Wu J, Hu C, Tang Z, et al., 2018, Tissue-engineered vascular
               grafts: Balance of the four major requirements.  Colloid   57.  Sonam S, Sathe SR, Yim EK, et al., 2016, Cell contractility
               Interface Sci Commun, 23: 34–44.                   arising from topography and shear flow determines human
               https://doi.org/10.1016/j.colcom.2018.01.005       mesenchymal stem cell fate. Sci Rep, 6: 20415.
            47.  Sarkar  S,  Salacinski  HJ,  Hamilton  G,  et al.,  2006,  The      https://doi.org/10.1038/srep20415
               mechanical properties of infrainguinal vascular bypass   58.  Liang Y, Zhen X, Wang K, et al., 2017, Folic acid attenuates
               grafts: Their role in influencing patency. Eur J Vasc Endovasc   cobalt chloride-induced pge2 production in huvecs via
               Surg, 31: 627–636.                                 the  no/hif-1alpha/cox-2  pathway.  Biochem Biophys Res
               https://doi.org/10.1016/j.ejvs.2006.01.006         Commun, 490: 567–573.
            48.  Zhang Y, Yu Y, Ozbolat IT, 2013, Direct bioprinting of vessel-     https://doi.org/10.1016/j.bbrc.2017.06.079
               like tubular microfluidic channels. J Nanotechnol Eng Med,   59.  Ogura Y, Sutterwala FS, Flavell RA, 2006, The inflammasome:
               4: 020902.                                         First line of the immune response to cell stress.  Cell,
               https://doi.org/10.1115/1.4024398                  126: 659–662.
            49.  Liu Y, Li Z, Li J, et al., 2020, Stiffness-mediated mesenchymal      https://doi.org/10.1016/j.cell.2006.08.002
               stem cell fate decision in 3D-bioprinted hydrogels.  Burns   60.  Guilak F, Cohen DM, Estes BT,  et al., 2009, Control of
               Trauma, 8: tkaa029.                                stem cell fate by physical interactions with the extracellular
               https://doi.org/10.1093/burnst/tkaa029             matrix. Cell Stem Cell, 5: 17–26.
            50.  Lin CH,  Su JJ,  Lee  SY,  et al. 2018,  Stiffness  modification      https://doi.org/10.1016/j.stem.2009.06.016
               of  photopolymerizable  gelatin-methacrylate  hydrogels   61.  Young AT, White OC, Daniele MA, 2020, Rheological
               influences endothelial differentiation of human mesenchymal   properties of coordinated physical gelation and chemical
               stem cells. J Tissue Eng Regen Med, 12: 2099–2111.   crosslinking in gelatin methacryloyl (GelMA) hydrogels.
               https://doi.org/10.1002/term.2745                  Macromol Biosci, 20: e2000183.
            51.  Ogle ME, Doron G, Levy MJ,  et al., 2020, Hydrogel      https://doi.org/10.1002/mabi.202000183
               culture surface stiffness modulates mesenchymal stromal   62.  Marga F, Jakab K, Khatiwala C,  et  al., 2012, Toward
               cell secretome and alters senescence.  Tissue Eng Part  A,   engineering  functional  organ  modules  by  additive
               26: 1259–1271.                                     manufacturing. Biofabrication, 4: 022001.
               https://doi.org/10.1089/ten.tea.2020.0030          https://doi.org/10.1088/1758-5082/4/2/022001
            52.  Engler AJ, Sen S, Sweeney HL, et al., 2006, Matrix elasticity   63.  Gentile C, Lim KS, Vozzi G, 2021, Editorial: 3D bioprinting
               directs stem cell lineage specification. Cell, 126: 677–689.   of vascularized tissues for in vitro and in vivo applications.
               https://doi.org/10.1016/j.cell.2006.06.044         Front Bioeng Biotechnol, 9: 754124.
            53.  Yi B, Shen Y, Tang H, et al., 2020, Stiffness of the aligned      https://doi.org/10.3389/fbioe.2021.754124
               fibers affects structural and functional integrity of the   64.  Shinohara S, Kihara T, Sakai S, et al., 2013, Fabrication of
               oriented endothelial cells. Acta Biomater, 108: 237–249.   in vitro three-dimensional multilayered blood vessel model
               https://doi.org/10.1016/j.actbio.2020.03.022       using human endothelial and smooth muscle cells and high-
                                                                  strength PEG hydrogel. J Biosci Bioeng, 116: 231–234.
            54.  Liu P, Tu J, Wang W, et al., 2022, Effects of mechanical stress
               stimulation on function and expression mechanism of      https://doi.org/10.1016/j.jbiosc.2013.02.013
               osteoblasts. Front Bioeng Biotechnol, 10: 830722.
                                                               65.  Moore KH, Murphy HA, George EM, 2021, The glycocalyx:
               https://doi.org/10.3389/fbioe.2022.830722          A central regulator of vascular function. Am J Physiol Regul
                                                                  Integr Comp Physiol, 320: R508–R518.
            55.  Matthews BD, Overby DR, Mannix R, et al., 2006, Cellular
               adaptation to mechanical stress: Role of integrins, Rho,      https://doi.org/10.1152/ajpregu.00340.2020
               cytoskeletal tension and mechanosensitive ion channels.   66.  Xu Y, Hu Y, Liu C, et al., 2018, A novel strategy for creating
               J Cell Sci, 119: 508–518.
                                                                  tissue-engineered biomimetic blood vessels using 3D
               https://doi.org/10.1242/jcs.02760                  bioprinting technology. Materials (Basel), 11: 1581.



            Volume 9 Issue 4 (2023)                        429                         https://doi.org/10.18063/ijb.740
   432   433   434   435   436   437   438   439   440   441   442