Page 173 - IJB-9-5
P. 173
International Journal of Bioprinting Guide about the effects of sterilization on 3D-printed materials for medicine
49. Formlabs, Resin for pliable prototyping. 57. Chen YW, Moussi J, Drury JL, et al., 2016, Zirconia in
biomedical applications. Expert Rev Med Devices, 13(10):
https://formlabs-media.formlabs.com/datasheets/1801084-
TDS-ENUS-0P.pdf 945–963.
50. Lioufas PA, Hons M, Quayle MR, et al., 2016, 3D printed https://doi.org/10.1080/17434440.2016.1230017
models of cleft palate pathology for surgical education. Plast 58. Xing H, Zou B, Li S, et al., 2017, Study on surface quality,
Reconstr Surg Glob Open, 4(9): 1–6. precision and mechanical properties of 3D printed ZrO2
https://doi.org/10.1097/GOX.0000000000001029 ceramic components by laser scanning stereolithography.
Ceram Int, 43(18): 16340–16347.
51. Aimar A, Palermo A, Innocenti B, 2019, The role of 3D
printing in medical applications: A state of the art. J Healthc https://doi.org/10.1016/j.ceramint.2017.09.007
Eng, 5340616. 59. Kassab GS, Sacks MS, 2016, Structure-based mechanics of
https://doi.org/10.1155/2019/5340616 tissues and organs.
52. Bosc R, Tortolano L, Hersant B, et al., 2021, Bacteriological 60. Abbott RD, Kaplan DL, 2015, Strategies for improving the
and mechanical impact of the Sterrad sterilization method physiological relevance of human engineered tissues. Trends
on personalized 3D printed guides for mandibular Biotechnol, 33(7): 401–407.
reconstruction. Sci Rep, 11: 581. https://doi.org/10.1016/j.tibtech.2015.04.003
https://doi.org/10.1038/s41598-020-79752-7 61. Gu Q, Tomaskovic-Crook E, Lozano R, 2016, Functional
53. Fuentes JM, Arrieta MP, Boronat T, 2022, Effects of steam 3D neural mini‐tissues from printed gel‐based bioink
heat and dry heat sterilization processes on 3D printed and human neural stem cells. Adv Healthc Mater, 5(12):
commercial polymers printed by fused deposition modeling. 1429–1438.
Polymers (Basel), 14(855): 855. 62. Tejo-Otero A, Fenollosa-Artés F, Achaerandio I et al., 2022,
54. Zunita M, Makertiharta IGBN, Irawanti R, 2022, 3D Soft-tissue-mimicking using hydrogels for the development
printed polyether ether ketone (PEEK), polyamide (PA) of phantoms. Gels, 8(1): 40.
and its evaluation of mechanical properties and its uses https://doi.org/10.3390/gels8010040
in healthcare applications. IOP Conf Ser Mater Sci Eng,
1224: 0–8. 63. Yoon YC, Lee JS, Park SU, et al., 2017, Quantitative
assessment of liver fibrosis using shore durometer. Ann Surg
https://doi.org/10.1088/1757-899X/1224/1/012005 Treat Res, 93(6): 300–304.
55. Msallem B, Sharma N, Cao S, et al., 2020, Evaluation of the 64. Estermann SJ, Pahr DH, Reisinger A, 2020, Quantifying
dimensional accuracy of 3D-printed anatomical mandibular tactile properties of liver tissue, silicone elastomers, and
models using. J Clin Med, 9(3): 817. a 3D printed polymer for manufacturing realistic organ
models. J Mech Behav Biomed Mater, 104: 103630.
56. Razaviye MK, Tafti RA, Khajehmohammadi M, 2022, SLS
3D printer: An experimental approach. CIRP J Manuf Sci 65. Tejo-Otero A, Lustig-Gainza P, Fenollosa-Artés F, et al.,
Technol, 38: 760–768. 2020, 3D printed soft surgical planning prototype for a
biliary tract rhabdomyosarcoma. J Mech Behav Biomed
https://doi.org/10.1016/j.cirpj.2022.06.016 Mater, 109:103844.
Volume 9 Issue 5 (2023) 165 https://doi.org/10.18063/ijb.756

