Page 173 - IJB-9-5
P. 173

International Journal of Bioprinting        Guide about the effects of sterilization on 3D-printed materials for medicine



            49.  Formlabs, Resin for pliable prototyping.      57.  Chen YW, Moussi J, Drury JL,  et al., 2016, Zirconia in
                                                                  biomedical applications.  Expert Rev Med Devices, 13(10):
               https://formlabs-media.formlabs.com/datasheets/1801084-
               TDS-ENUS-0P.pdf                                    945–963.
            50.  Lioufas PA, Hons M, Quayle MR, et al., 2016, 3D printed   https://doi.org/10.1080/17434440.2016.1230017
               models of cleft palate pathology for surgical education. Plast   58.  Xing H, Zou B, Li S, et al., 2017, Study on surface quality,
               Reconstr Surg Glob Open, 4(9): 1–6.                precision and mechanical properties of 3D printed ZrO2
               https://doi.org/10.1097/GOX.0000000000001029       ceramic components by laser scanning stereolithography.
                                                                  Ceram Int, 43(18): 16340–16347.
            51.  Aimar A, Palermo A, Innocenti B, 2019, The role of 3D
               printing in medical applications: A state of the art. J Healthc   https://doi.org/10.1016/j.ceramint.2017.09.007
               Eng, 5340616.                                   59.  Kassab GS, Sacks MS, 2016, Structure-based mechanics of
               https://doi.org/10.1155/2019/5340616               tissues and organs.
            52.  Bosc R, Tortolano L, Hersant B, et al., 2021, Bacteriological   60.  Abbott RD, Kaplan DL, 2015, Strategies for improving the
               and mechanical impact of the Sterrad sterilization method   physiological relevance of human engineered tissues. Trends
               on personalized 3D printed guides for mandibular   Biotechnol, 33(7): 401–407.
               reconstruction. Sci Rep, 11: 581.                  https://doi.org/10.1016/j.tibtech.2015.04.003
               https://doi.org/10.1038/s41598-020-79752-7      61.  Gu Q, Tomaskovic-Crook  E, Lozano R,  2016, Functional
            53.  Fuentes JM, Arrieta MP, Boronat T, 2022, Effects of steam   3D neural mini‐tissues from printed gel‐based bioink
               heat and dry heat sterilization processes on 3D printed   and human neural stem cells.  Adv  Healthc  Mater, 5(12):
               commercial polymers printed by fused deposition modeling.   1429–1438.
               Polymers (Basel), 14(855): 855.                 62.  Tejo-Otero A, Fenollosa-Artés F, Achaerandio I et al., 2022,
            54.  Zunita M, Makertiharta IGBN, Irawanti R, 2022, 3D   Soft-tissue-mimicking using hydrogels for the development
               printed polyether ether ketone (PEEK), polyamide (PA)   of phantoms. Gels, 8(1): 40.
               and its evaluation of mechanical properties and its uses   https://doi.org/10.3390/gels8010040
               in healthcare applications.  IOP Conf Ser Mater Sci Eng,
               1224: 0–8.                                      63.  Yoon YC, Lee JS, Park SU,  et al., 2017, Quantitative
                                                                  assessment of liver fibrosis using shore durometer. Ann Surg
               https://doi.org/10.1088/1757-899X/1224/1/012005    Treat Res, 93(6): 300–304.
            55.  Msallem B, Sharma N, Cao S, et al., 2020, Evaluation of the   64.  Estermann  SJ,  Pahr DH, Reisinger A, 2020,  Quantifying
               dimensional accuracy of 3D-printed anatomical mandibular   tactile properties of liver tissue, silicone elastomers, and
               models using. J Clin Med, 9(3): 817.               a 3D printed polymer for manufacturing realistic organ
                                                                  models. J Mech Behav Biomed Mater, 104: 103630.
            56.  Razaviye MK, Tafti RA, Khajehmohammadi M, 2022, SLS
               3D printer: An experimental approach. CIRP J Manuf Sci   65.  Tejo-Otero A, Lustig-Gainza P, Fenollosa-Artés F,  et al.,
               Technol, 38: 760–768.                              2020, 3D printed soft surgical planning prototype for a
                                                                  biliary tract rhabdomyosarcoma.  J  Mech  Behav  Biomed
               https://doi.org/10.1016/j.cirpj.2022.06.016        Mater, 109:103844.



























            Volume 9 Issue 5 (2023)                        165                         https://doi.org/10.18063/ijb.756
   168   169   170   171   172   173   174   175   176   177   178