Page 214 - IJB-9-5
P. 214

International Journal of Bioprinting                                     Using droplet jetting for bioprinting



            111. Pack  M, Hu  H, Kim  D-O,  et al., 2015,  Colloidal drop   124. Negro A, Cherbuin T, Lutolf MP, 2018, 3D inkjet printing of
               deposition on porous substrates: Competition among   complex, cell-laden hydrogel structures. Sci Rep, 8(1):17099.
               particle motion, evaporation, and infiltration.  Langmuir,   https//doi.org/10.1038/s41598-018-35504-2
               31(29):7953–7961.
                                                               125. Phillippi JA, Miller E, Weiss L, et al., 2008, Microenvironments
            112. Dou R, Derby B, 2012, Formation of coffee stains on porous   engineered by inkjet bioprinting spatially direct adult stem
               surfaces. Langmuir, 28(12):5331–5338.
                                                                  cells  toward  muscle-  and  bone-like  subpopulations.  Stem
            113. Zhang B, Lei Q, Wang Z, et al., 2016, Droplets can rebound   Cells, 26(1):127–134.
               toward both directions on textured surfaces with a wettability   https://doi.org/10.1634/stemcells.2007-0520
               gradient. Langmuir, 32(1):346–351.
                                                               126. Engler AJ, Sen S, Sweeney HL, et al., 2006, Matrix elasticity
            114. Zhao J, Chen S, Liu Y, 2017, Dynamical behaviors of droplet   directs stem cell lineage specification.  Cell,  126(4):
               impingement and spreading on chemically heterogeneous   677–689.
               surfaces. Appl Surf Sci, 400:515–523.
                                                                  https://doi.org/10.1016/j.cell.2006.06.044
            115. Clavijo CE, Crockett J, Maynes D, 2017, Hydrodynamics of
               droplet impingement on hot surfaces of varying wettability.   127. Dongre  A,  Weinberg RA,  2019, New insights  into  the
               Int J Heat Mass Transf, 108:1714–1726.             mechanisms of epithelial–mesenchymal transition and
                                                                  implications for cancer.  Nat Rev Mol Cell Biol,  20(2):
            116. Li H, Li A, Zhao Z, et al., 2020, Heterogeneous wettability   69–84.
               surfaces:  Principle, construction, and applications.  Small
               Struct, 1(2):2000028.                              https//doi.org/10.1038/s41580-018-0080-4
               https://doi.org/10.1002/sstr.202000028          128. Mihalko EP, Brown AC, 2018, Material strategies for
                                                                  modulating  epithelial  to  mesenchymal  transitions.  ACS
            117. Lim C, Lam Y, 2014, An investigation into a micro-sized   Biomater Sci Eng, 4(4):1149–1161.
               droplet impinging on a surface with sharp wettability
               contrast. J Phys D Appl Phys, 47(42):425305.       https//doi.org/10.1021/acsbiomaterials.6b00751
            118. Yuan Z, Matsumoto M, Kurose R, 2020, Directional   129. Arai K, Iwanaga S, Toda H, et al., 2011, Three-dimensional
               migration of an impinging droplet on a surface with   inkjet biofabrication based on designed images.
               wettability difference. Phys Rev Fluids, 5(11):113605.  Biofabrication, 3(3):034113.
            119. Farshchian  B,  Pierce  J,  Beheshti  MS,  et al.,  2018,  Droplet   130. Yoon S, Park JA, Lee H-R, et al., 2018, Inkjet–spray hybrid
               impinging behavior on surfaces with wettability contrasts.   printing for 3D freeform fabrication of multilayered
               Microelectron Eng, 195:50–56.                      hydrogel structures. Adv Healthc Mater, 7(14):1800050.
            120. Lee JM, Sing SL, Yeong WY, 2020, Bioprinting of   https://doi.org/10.1002/adhm.201800050
               multimaterials with computer-aided design/computer-  131. Xu T, Zhao W, Zhu J-M, et al., 2013, Complex heterogeneous
               aided manufacturing (in English). Int J Bioprint, 6(1):245.  tissue constructs containing multiple cell types prepared by
               https//doi.org/10.18063/ijb.v6i1.245               inkjet printing technology. Biomaterials, 34(1):130–139.
            121. AlZaid S, Hammad N, Albalawi HI, et al., 2022, Advanced   132. Agarwala S, Lee JM, Ng WL,  et al., 2018, A novel 3D
               software development of 2D and 3D model visualization   bioprinted flexible and biocompatible hydrogel bioelectronic
               for TwinPrint, a dual-arm 3D bioprinting system for multi-  platform. Biosens Bioelectron, 102:365–371.
               material printing. Mater Sci Addit Manuf, 1(3):19–25.  https://doi.org/10.1016/j.bios.2017.11.039
               https//doi.org/10.18063/msam.v1i3.19            133. Lee  JM,  Sing  SL,  Zhou  M,  et al.,  2018,  3D  bioprinting
            122.  Wang D, Ker DF, Ng KW, et al., 2021, Combinatorial mechanical   processes: A perspective on classification and terminology
               gradation and growth factor biopatterning strategy for spatially   (in English). Int J Bioprint, 4(2):151.
               controlled bone-tendon-like cell differentiation and tissue   https//doi.org/10.18063/IJB.v4i2.151
               formation. NPG Asia Mater, 13(1):26.
                                                               134. Lee H-R, Park JA, Kim S, et al., 2021, 3D microextrusion-
               https//doi.org/10.1038/s41427-021-00294-z          inkjet hybrid printing of structured human skin equivalents.
            123. Ferrara V, Zito G, Arrabito G, et al., 2020, Aqueous   Bioprinting, 22:e00143.
               processed biopolymer interfaces for single-cell microarrays.   https://doi.org/10.1016/j.bprint.2021.e00143
               ACS Biomater Sci Eng, 6(5):3174–3186.
               https//doi.org/10.1021/acsbiomaterials.9b01871







            Volume 9 Issue 5 (2023)                        206                         https://doi.org/10.18063/ijb.758
   209   210   211   212   213   214   215   216   217   218   219