Page 214 - IJB-9-5
P. 214
International Journal of Bioprinting Using droplet jetting for bioprinting
111. Pack M, Hu H, Kim D-O, et al., 2015, Colloidal drop 124. Negro A, Cherbuin T, Lutolf MP, 2018, 3D inkjet printing of
deposition on porous substrates: Competition among complex, cell-laden hydrogel structures. Sci Rep, 8(1):17099.
particle motion, evaporation, and infiltration. Langmuir, https//doi.org/10.1038/s41598-018-35504-2
31(29):7953–7961.
125. Phillippi JA, Miller E, Weiss L, et al., 2008, Microenvironments
112. Dou R, Derby B, 2012, Formation of coffee stains on porous engineered by inkjet bioprinting spatially direct adult stem
surfaces. Langmuir, 28(12):5331–5338.
cells toward muscle- and bone-like subpopulations. Stem
113. Zhang B, Lei Q, Wang Z, et al., 2016, Droplets can rebound Cells, 26(1):127–134.
toward both directions on textured surfaces with a wettability https://doi.org/10.1634/stemcells.2007-0520
gradient. Langmuir, 32(1):346–351.
126. Engler AJ, Sen S, Sweeney HL, et al., 2006, Matrix elasticity
114. Zhao J, Chen S, Liu Y, 2017, Dynamical behaviors of droplet directs stem cell lineage specification. Cell, 126(4):
impingement and spreading on chemically heterogeneous 677–689.
surfaces. Appl Surf Sci, 400:515–523.
https://doi.org/10.1016/j.cell.2006.06.044
115. Clavijo CE, Crockett J, Maynes D, 2017, Hydrodynamics of
droplet impingement on hot surfaces of varying wettability. 127. Dongre A, Weinberg RA, 2019, New insights into the
Int J Heat Mass Transf, 108:1714–1726. mechanisms of epithelial–mesenchymal transition and
implications for cancer. Nat Rev Mol Cell Biol, 20(2):
116. Li H, Li A, Zhao Z, et al., 2020, Heterogeneous wettability 69–84.
surfaces: Principle, construction, and applications. Small
Struct, 1(2):2000028. https//doi.org/10.1038/s41580-018-0080-4
https://doi.org/10.1002/sstr.202000028 128. Mihalko EP, Brown AC, 2018, Material strategies for
modulating epithelial to mesenchymal transitions. ACS
117. Lim C, Lam Y, 2014, An investigation into a micro-sized Biomater Sci Eng, 4(4):1149–1161.
droplet impinging on a surface with sharp wettability
contrast. J Phys D Appl Phys, 47(42):425305. https//doi.org/10.1021/acsbiomaterials.6b00751
118. Yuan Z, Matsumoto M, Kurose R, 2020, Directional 129. Arai K, Iwanaga S, Toda H, et al., 2011, Three-dimensional
migration of an impinging droplet on a surface with inkjet biofabrication based on designed images.
wettability difference. Phys Rev Fluids, 5(11):113605. Biofabrication, 3(3):034113.
119. Farshchian B, Pierce J, Beheshti MS, et al., 2018, Droplet 130. Yoon S, Park JA, Lee H-R, et al., 2018, Inkjet–spray hybrid
impinging behavior on surfaces with wettability contrasts. printing for 3D freeform fabrication of multilayered
Microelectron Eng, 195:50–56. hydrogel structures. Adv Healthc Mater, 7(14):1800050.
120. Lee JM, Sing SL, Yeong WY, 2020, Bioprinting of https://doi.org/10.1002/adhm.201800050
multimaterials with computer-aided design/computer- 131. Xu T, Zhao W, Zhu J-M, et al., 2013, Complex heterogeneous
aided manufacturing (in English). Int J Bioprint, 6(1):245. tissue constructs containing multiple cell types prepared by
https//doi.org/10.18063/ijb.v6i1.245 inkjet printing technology. Biomaterials, 34(1):130–139.
121. AlZaid S, Hammad N, Albalawi HI, et al., 2022, Advanced 132. Agarwala S, Lee JM, Ng WL, et al., 2018, A novel 3D
software development of 2D and 3D model visualization bioprinted flexible and biocompatible hydrogel bioelectronic
for TwinPrint, a dual-arm 3D bioprinting system for multi- platform. Biosens Bioelectron, 102:365–371.
material printing. Mater Sci Addit Manuf, 1(3):19–25. https://doi.org/10.1016/j.bios.2017.11.039
https//doi.org/10.18063/msam.v1i3.19 133. Lee JM, Sing SL, Zhou M, et al., 2018, 3D bioprinting
122. Wang D, Ker DF, Ng KW, et al., 2021, Combinatorial mechanical processes: A perspective on classification and terminology
gradation and growth factor biopatterning strategy for spatially (in English). Int J Bioprint, 4(2):151.
controlled bone-tendon-like cell differentiation and tissue https//doi.org/10.18063/IJB.v4i2.151
formation. NPG Asia Mater, 13(1):26.
134. Lee H-R, Park JA, Kim S, et al., 2021, 3D microextrusion-
https//doi.org/10.1038/s41427-021-00294-z inkjet hybrid printing of structured human skin equivalents.
123. Ferrara V, Zito G, Arrabito G, et al., 2020, Aqueous Bioprinting, 22:e00143.
processed biopolymer interfaces for single-cell microarrays. https://doi.org/10.1016/j.bprint.2021.e00143
ACS Biomater Sci Eng, 6(5):3174–3186.
https//doi.org/10.1021/acsbiomaterials.9b01871
Volume 9 Issue 5 (2023) 206 https://doi.org/10.18063/ijb.758

