Page 211 - IJB-9-5
P. 211

International Journal of Bioprinting                                     Using droplet jetting for bioprinting



            35.  Soman  P,  Chung  H,  Zhang  AP,  et al.,  2013,  Digital   47.  Poole R, 2012, The deborah and weissenberg numbers. Rheol
               microfabrication of user-defined 3D microstructures   Bull, 53(2):32–39.
               in cell-laden hydrogels (in English).  Biotechnol Bioeng,   48.  Vadillo DC, Tuladhar TR, Mulji AC, et al., 2010, Evaluation
               110(11):3038–3047.                                 of the inkjet fluid’s performance using the “Cambridge
               https//doi.org/Doi 10.1002/Bit.24957               Trimaster” filament stretch and break-up device.  J Rheol,
            36.  Zhu W, Qu X, Zhu J, et al., 2017, Direct 3D bioprinting   54(2):261–282.
               of  prevascularized  tissue  constructs  with  complex  https//doi.org/10.1122/1.3302451
               microarchitecture. Biomaterials, 124:106–115.
                                                               49.  Modak CD, Kumar A, Tripathy A, et al., 2020, Drop impact
               https://doi.org/10.1016/j.biomaterials.2017.01.042  printing. Nat Commun, 11(1):4327.
            37.  Gauvin R, Chen YC, Lee JW, et al., 2012, Microfabrication   https//doi.org/10.1038/s41467-020-18103-6
               of  complex  porous  tissue  engineering  scaffolds  using
               3D projection stereolithography.  Biomaterials,  33(15):   50.  Meyer JD, Bazilevsky AV, Rozhkov AN, 1997,  Effects of
               3824–3834.                                         Polymeric Additives on Thermal Ink Jets, Seattle, WA.
               https://doi.org/10.1016/j.biomaterials.2012.01.048  51.  Morrison NF, Harlen OG, 2010, Viscoelasticity in inkjet
                                                                  printing. Rheol Acta, 49(6):619–632.
            38.  Wang Z, Kumar H, Tian Z, et al., 2018, Visible light
               photoinitiation of cell-adhesive gelatin methacryloyl   https//doi.org/10.1007/s00397-009-0419-z
               hydrogels for stereolithography 3D bioprinting. ACS Appl   52.  Suly P, Sevcik J, Dmonte DJ, et al., 2021, Inkjet printability
               Mater Interfaces, 10(32):26859–26869.              assessment of weakly viscoelastic fluid: A semidilute
               https//doi.org/10.1021/acsami.8b06607              polyvinylpyrrolidone solution ink case study.  Langmuir,
                                                                  37(28):8557–8568.
            39.  Mahdavi SS, Abdekhodaie MJ, Kumar H,  et al., 2020,
               Stereolithography 3D bioprinting method for fabrication   https//doi.org/10.1021/acs.langmuir.1c01010
               of human corneal stroma equivalent.  Ann Biomed Eng,   53.  Du Z, Lin Y, Xing R, et al., 2018, Controlling the polymer
               48(7):1955–1970.                                   ink’s rheological properties and viscoelasticity to suppress
               https//doi.org/10.1007/s10439-020-02537-6          satellite droplets. Polymer, 138:75–82.
            40.  Mao Q, Wang Y, Li Y, et  al., 2020, Fabrication of liver   https://doi.org/10.1016/j.polymer.2018.01.052
               microtissue with liver decellularized extracellular matrix   54.  Jang D, Kim D, Moon J, 2009, Influence of fluid physical
               (dECM) bioink by digital light processing (DLP) bioprinting.   properties on ink-jet printability.  Langmuir,  25(5):2629–
               Mater Sci Eng C Mater Biol Appl, 109: Art no. 110625.
                                                                  2635.
               https//doi.org/10.1016/j.msec.2020.110625
                                                                  https//doi.org/10.1021/la900059m
            41.  Gudupati  H,  Dey M,  Ozbolat  I,  2016,  A  comprehensive
               review on droplet-based bioprinting: Past, present and   55.  Blaeser A, Campos DFD, Puster U, et al., 2016, Controlling
               future. Biomaterials, 102:20–42.                   shear stress in 3D bioprinting is a key factor to balance
                                                                  printing resolution and stem cell integrity.  Adv  Healthc
            42.  Li X, Liu B, Pei B,  et al., 2020, Inkjet bioprinting of   Mater, 5(3):326–333.
               biomaterials. Chem Rev, 120(19):10793–10833.
                                                                  https//doi.org/10.1002/adhm.201500677
               https//doi.org/10.1021/acs.chemrev.0c00008
                                                               56.  Krizek J, Delrot P, Moser C, 2020, Repetitive regime of
            43.  Liu Y, Derby B, 2019, Experimental study of the parameters   highly focused liquid microjets for needle-free injection. Sci
               for stable drop-on-demand inkjet performance. Phys Fluids,   Rep, 10(1):5067.
               31(3):032004.
                                                                  https//doi.org/10.1038/s41598-020-61924-0
               https//doi.org/10.1063/1.5085868
                                                               57.  Kiyama A, Mansoor MM, Speirs NB, et al., 2019, Gelatine
            44.  Yan J, Huang Y, Xu C, et al., 2012, Effects of fluid properties
               and laser fluence on jet formation during laser direct writing   cavity dynamics of high-speed sphere impact. J Fluid Mech,
               of glycerol solution. J Appl Phys, 112(8):083105.  880:707–722.
               https//doi.org/10.1063/1.4759344                   https//doi.org/10.1017/jfm.2019.696
            45.  Kang SH, Kim S, Lim JW, et al., 2020, Study on fall velocity   58.  Park JA, Yoon S, Kwon J, et al., 2017, Freeform
               of continuously ejected micro inkjet droplet.  J Mech Sci   micropatterning of living cells into cell culture medium
               Technol, 34(8):3311–3315.                          using direct inkjet printing. Sci Rep, 7(1):14610.
               https//doi.org/10.1007/s12206-020-0723-1           https//doi.org/10.1038/s41598-017-14726-w
            46.  Xu C, Zhang Z, Fu J, et al., 2017, Study of pinch-off locations   59.  Chen L, Bonaccurso E, Deng P, et al., 2016, Droplet impact
               during  drop-on-demand  inkjet  printing  of  viscoelastic   on soft viscoelastic surfaces. Phys Rev E, 94(6):063117.
               alginate solutions. Langmuir, 33(20):5037–5045.    https//doi.org/10.1103/PhysRevE.94.063117
               https//doi.org/10.1021/acs.langmuir.7b00874
            Volume 9 Issue 5 (2023)                        203                         https://doi.org/10.18063/ijb.758
   206   207   208   209   210   211   212   213   214   215   216