Page 210 - IJB-9-5
P. 210

International Journal of Bioprinting                                     Using droplet jetting for bioprinting



               osteo- and endothelial progenitor cells. Tissue Eng Part A,   23.  Visser  J,  Peters  B,  Burger  TJ, et al.,  2013,  Biofabrication
               17(15–16):2113–2121.                               of multi-material anatomically shaped tissue constructs.
                                                                  Biofabrication, 5(3):035007.
               https//doi.org/10.1089/ten.TEA.2011.0019
                                                                  https//doi.org/10.1088/1758-5082/5/3/035007
            14.  Huang Y, He K, Wang X, 2013, Rapid prototyping of a hybrid
               hierarchical polyurethane-cell/hydrogel construct for   24.  Ng WL, Yeong WY, Naing MW, 2016, Microvalve bioprinting
               regenerative medicine. Mater Sci Eng C, 33(6):3220–3229.  of  cellular  droplets  with  high  resolution  and  consistency.
                                                                  Proceedings of the International  Conference on Progress in
               https//doi.org/10.1016/j.msec.2013.03.048          Additive Manufacturing. 397–402.
            15.  Lee  H, Ahn  S, Bonassar LJ,  et  al., 2013,  Cell-laden   https//doi.org/10.3850/2424-8967_V02-236
               poly(varepsilon-caprolactone)/alginate hybrid scaffolds
               fabricated by an aerosol cross-linking process for obtaining   25.  Ng WL, Lee JM, Yeong WY, et al., 2017, Microvalve-based
               homogeneous cell distribution: Fabrication, seeding   bioprinting—Process, bio-inks and applications.  Biomater
               efficiency, and cell proliferation and distribution. Tissue Eng   Sci, 5(4):632–647.
               Part C Methods, 19(10):784–793.                 26.  Masaeli E, Forster V, Picaud S, et al., 2020, Tissue engineering
                                                                  of  retina  through  high resolution  3-dimensional  inkjet
               https//doi.org/10.1089/ten.TEC.2012.0651
                                                                  bioprinting. Biofabrication, 12(2): Art no. 025006.
            16.  Ozbolat IT, Chen H, Yu Y, 2014, Development of ‘Multi-arm   https//doi.org/10.1088/1758-5090/ab4a20
               Bioprinter’ for hybrid biofabrication of tissue engineering
               constructs. Robot Comput Integr Manuf, 30(3):295–304.  27.  Solis LH, Ayala Y, Portillo S,  et al., 2019, Thermal inkjet
                                                                  bioprinting triggers the activation of the VEGF pathway
               https//doi.org/10.1016/j.rcim.2013.10.005          in  human  microvascular  endothelial  cells  in  vitro.
            17.  Shim J-H, Lee J-S, Kim JY,  et al., 2012, Bioprinting of a   Biofabrication, 11(4): Art no. 045005.
               mechanically enhanced three-dimensional dual cell-laden   https//doi.org/10.1088/1758-5090/ab25f9
               construct for osteochondral tissue engineering using a
               multi-head tissue/organ building system.  J Micromech   28.  Angelopoulos I, Allenby MC, Lim M, et al., 2020, Engineering
               Microeng, 22(8):085014.                            inkjet bioprinting processes toward translational therapies.
                                                                  Biotechnol Bioeng, 117(1):272–284.
               https//doi.org/10.1088/0960-1317/22/8/085014
                                                                  https//doi.org/10.1002/bit.27176
            18.  Snyder JE, Hamid Q, Wang C, et al., 2011, Bioprinting cell-
               laden matrigel for radioprotection study of liver by pro-drug   29.  Wu DZ, Xu CX, 2018, Predictive modeling of droplet
               conversion in a dual-tissue microfluidic chip. Biofabrication,   formation processes in inkjet-based bioprinting. J Manuf Sci
                                                                  Eng Transact Asme, 140(10): Art no. 101007.
               3(3):034112.
                                                                  https//doi.org/10.1115/1.4040619
               https//doi.org/10.1088/1758-5082/3/3/034112
                                                               30.  Guillemot F, Guillotin B, Fontaine A,  et al., 2011, Laser-
            19.  Wang  X,  Yan  Y,  Pan  Y, et al.,  2006,  Generation  of  three-  assisted bioprinting to deal with tissue complexity in
               dimensional hepatocyte/gelatin structures with rapid   regenerative medicine (in English).  Mrs Bull,  36(12):
               prototyping system (in English). Tissue Eng, 12(1):83–90.  1015–1019.
               https//doi.org/DOI 10.1089/ten.2006.12.83          https//doi.org/Doi 10.1557/Mrs.2011.272
            20.  Zhuang P, Ng WL, An J,  et al., 2019, Layer-by-layer   31.  Guillotin B, Souquet A, Catros S, et al., 2010, Laser assisted
               ultraviolet assisted extrusion-based (UAE) bioprinting of   bioprinting of engineered tissue with high cell density and
               hydrogel constructs with high aspect ratio for soft tissue   microscale organization. Biomaterials, 31(28):7250–7256.
               engineering applications. PLoS One, 14(6):e0216776.
                                                               32.  Gruene M, Deiwick A, Koch L, et al., 2011, Laser printing
               https//doi.org/10.1371/journal.pone.0216776        of stem cells for biofabrication of scaffold-free autologous
                                                                  grafts. Tissue Eng Part C Methods, 17(1):79–87.
            21.  Lee JM, Yeong WY, 2020, Engineering macroscale cell
               alignment through coordinated toolpath design using   https//doi.org/10.1089/ten.tec.2010.0359
               support-assisted  3D bioprinting.  J  R  Soc  Interface,   33.  Guillemot F, Souquet A, Catros S,  et al., 2010, High-
               17(168):20200294.
                                                                  throughput laser printing of cells and biomaterials for tissue
               https//doi.org/doi:10.1098/rsif.2020.0294          engineering. Acta Biomater, 6(7):2494–2500.
            22.  Skardal A, Zhang J, Prestwich GD, 2010, Bioprinting vessel-  https://doi.org/10.1016/j.actbio.2009.09.029
               like constructs using hyaluronan hydrogels crosslinked with   34.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-
               tetrahedral polyethylene glycol tetracrylates.  Biomaterials,   based bioprinting–process, materials, applications and
               31(24):6173–6181.                                  regulatory challenges. Biofabrication, 12(2):022001.
               https//doi.org/10.1016/j.biomaterials.2010.04.045  https://doi.org/10.1088/1758-5090/ab6034

            Volume 9 Issue 5 (2023)                        202                         https://doi.org/10.18063/ijb.758
   205   206   207   208   209   210   211   212   213   214   215