Page 213 - IJB-9-5
P. 213
International Journal of Bioprinting Using droplet jetting for bioprinting
85. Park M-a, Jang H-j, Sirotkin FV, et al., 2012, Er:YAG laser 98. Stow CD, Hadfield MG, 1981, An experimental investigation
pulse for small-dose splashback-free microjet transdermal of fluid flow resulting from the impact of a water drop with
drug delivery. Opt Lett, 37(18):3894–3896. an unyielding dry surface. Proc R Soc Lond A Math Phys Sci,
373(1755):419–441.
https//doi.org/10.1364/OL.37.003894
99. Cossali GE, Coghe A, Marengo M, 1997, The impact of a
86. Berrospe-Rodriguez C, Visser CW, Schlautmann S, et al., single drop on a wetted solid surface. Exp Fluids, 22(6):
2016, Continuous-wave laser generated jets for needle free 463–472.
applications. Biomicrofluidics, 10(1):014104.
https//doi.org/10.1007/s003480050073
https//doi.org/10.1063/1.4940038
100. Mundo C, Sommerfeld M, Tropea C, 1998, On the modeling
87. Cu K, Bansal R, Mitragotri S, et al., 2020, Delivery strategies of liquid sprays impinging on surfaces. Atom Sprays, 8(6):
for skin: Comparison of nanoliter jets, needles and topical 625–652.
solutions. Ann Biomed Eng, 48(7):2028–2039.
101. Mundo C, Sommerfeld M, Tropea C, 1995, Droplet-wall
https//doi.org/10.1007/s10439-019-02383-1
collisions: Experimental studies of the deformation and
88. Zhao D, Zhou H, Wang Y, et al., 2021, Drop-on-demand breakup process. Int J Multiphase Flow, 21(2):151–173.
(DOD) inkjet dynamics of printing viscoelastic conductive https://doi.org/10.1016/0301-9322(94)00069-V
ink. Addit Manuf, 48:102451.
102. Wal RLV, Berger GM, Mozes SD, 2006, The splash/non-
https://doi.org/10.1016/j.addma.2021.102451
splash boundary upon a dry surface and thin fluid film. Exp
89. Wijshoff H, 2018, Drop dynamics in the inkjet printing Fluids, 40(1):53–59.
process. Curr Opin Colloid Interface Sci, 36:20–27.
https//doi.org/10.1007/s00348-005-0045-1
https://doi.org/10.1016/j.cocis.2017.11.004
103. Nooranidoost M, Izbassarov D, Tasoglu S, et al., 2019, A
90. Josserand C, Thoroddsen ST, 2016, Drop impact on a solid computational study of droplet-based bioprinting: Effects of
surface. Annu Rev Fluid Mech, 48:365–391. viscoelasticity. Phys Fluids, 31(8):081901.
91. Stanton DW, Rutland CJ, 1998, Multi-dimensional modeling https//doi.org/10.1063/1.5108824
of thin liquid films and spray-wall interactions resulting 104. Goh GL, Saengchairat N, Agarwala S, et al., 2019, Sessile
from impinging sprays. Int J Heat Mass Transf, 41(20): droplets containing carbon nanotubes: A study of
3037–3054.
evaporation dynamics and CNT alignment for printed
92. Laan N, de Bruin KG, Bartolo D, et al., 2014, Maximum electronics. Nanoscale, 11(22):10603–10614.
diameter of impacting liquid droplets. Phys Rev Appl, 105. Nguyen TA, Nguyen AV, Hampton MA, et al., 2012,
2(4):044018.
Theoretical and experimental analysis of droplet evaporation
https//doi.org/10.1103/PhysRevApplied.2.044018 on solid surfaces. Chem Eng Sci, 69(1):522–529.
93. Yarin AL, 2006, Drop impact dynamics: Splashing, spreading, 106. Shanahan M, Sefiane K, Moffat J, 2011, Dependence of
receding, bouncing…. Annu Rev Fluid Mech, 38:159–192. volatile droplet lifetime on the hydrophobicity of the
substrate. Langmuir, 27(8):4572–4577.
94. Alizadeh A, Bahadur V, Shang W, et al., 2013, Influence of
substrate elasticity on droplet impact dynamics. Langmuir, 107. Duursma G, Sefiane K, David S, 2010, Advancing and
29(14):4520–4524. receding contact lines on patterned structured surfaces.
Chem Eng Res Design, 88(5-6):737–743.
https//doi.org/10.1021/la304767t
108. Sefiane K, Wilson S, David S, et al., 2009, On the effect of the
95. Park SJ, Weon BM, Lee JS, et al., 2014, Visualization
of asymmetric wetting ridges on soft solids with X-ray atmosphere on the evaporation of sessile droplets of water.
microscopy. Nat Commun, 5(1):4369. Phys Fluids, 21(6):062101.
109. Nguyen PQM, Yeo L-P, Lok B-K, et al., 2014, Patterned
https//doi.org/10.1038/ncomms5369
surface with controllable wettability for inkjet printing
96. Tirella A, Vozzi F, De Maria C, et al., 2011, Substrate stiffness of flexible printed electronics. ACS Appl Mater Interfaces,
influences high resolution printing of living cells with an 6(6):4011–4016.
ink-jet system. J Biosci Bioeng, 112(1):79–85.
https//doi.org/10.1021/am4054546
https://doi.org/10.1016/j.jbiosc.2011.03.019
110. Lee JM, Yeong WY, 2015, A preliminary model of time-
97. Moreira ALN, Moita AS, Panão MR, 2010, Advances and pressure dispensing system for bioprinting based on printing
challenges in explaining fuel spray impingement: How much and material parameters. Virtual Phys Prototyp, 10(1):
of single droplet impact research is useful? Progr Energy 3–8.
Combust Sci, 36(5):554–580.
https//doi.org/10.1080/17452759.2014.979557
https://doi.org/10.1016/j.pecs.2010.01.002
Volume 9 Issue 5 (2023) 205 https://doi.org/10.18063/ijb.758

