Page 213 - IJB-9-5
P. 213

International Journal of Bioprinting                                     Using droplet jetting for bioprinting



            85.  Park M-a, Jang H-j, Sirotkin FV, et al., 2012, Er:YAG laser   98.  Stow CD, Hadfield MG, 1981, An experimental investigation
               pulse for small-dose splashback-free microjet transdermal   of fluid flow resulting from the impact of a water drop with
               drug delivery. Opt Lett, 37(18):3894–3896.         an unyielding dry surface. Proc R Soc Lond A Math Phys Sci,
                                                                  373(1755):419–441.
               https//doi.org/10.1364/OL.37.003894
                                                               99.  Cossali GE, Coghe A, Marengo M, 1997, The impact of a
            86.  Berrospe-Rodriguez C, Visser CW, Schlautmann S,  et  al.,   single drop on a wetted solid surface.  Exp Fluids,  22(6):
               2016, Continuous-wave laser generated jets for needle free   463–472.
               applications. Biomicrofluidics, 10(1):014104.
                                                                  https//doi.org/10.1007/s003480050073
               https//doi.org/10.1063/1.4940038
                                                               100. Mundo C, Sommerfeld M, Tropea C, 1998, On the modeling
            87.  Cu K, Bansal R, Mitragotri S, et al., 2020, Delivery strategies   of liquid sprays impinging on surfaces. Atom Sprays, 8(6):
               for skin: Comparison of nanoliter jets, needles and topical   625–652.
               solutions. Ann Biomed Eng, 48(7):2028–2039.
                                                               101. Mundo C,  Sommerfeld M,  Tropea C,  1995, Droplet-wall
               https//doi.org/10.1007/s10439-019-02383-1
                                                                  collisions: Experimental  studies  of  the deformation  and
            88.  Zhao D, Zhou H, Wang Y,  et al., 2021, Drop-on-demand   breakup process. Int J Multiphase Flow, 21(2):151–173.
               (DOD) inkjet dynamics of printing viscoelastic conductive   https://doi.org/10.1016/0301-9322(94)00069-V
               ink. Addit Manuf, 48:102451.
                                                               102. Wal RLV, Berger GM, Mozes SD, 2006, The splash/non-
               https://doi.org/10.1016/j.addma.2021.102451
                                                                  splash boundary upon a dry surface and thin fluid film. Exp
            89.  Wijshoff H, 2018, Drop dynamics in the inkjet printing   Fluids, 40(1):53–59.
               process. Curr Opin Colloid Interface Sci, 36:20–27.
                                                                  https//doi.org/10.1007/s00348-005-0045-1
               https://doi.org/10.1016/j.cocis.2017.11.004
                                                               103. Nooranidoost M, Izbassarov D, Tasoglu S,  et  al., 2019, A
            90.  Josserand C, Thoroddsen ST, 2016, Drop impact on a solid   computational study of droplet-based bioprinting: Effects of
               surface. Annu Rev Fluid Mech, 48:365–391.          viscoelasticity. Phys Fluids, 31(8):081901.
            91.  Stanton DW, Rutland CJ, 1998, Multi-dimensional modeling   https//doi.org/10.1063/1.5108824
               of thin liquid films and spray-wall interactions resulting   104. Goh GL, Saengchairat N, Agarwala S, et al., 2019, Sessile
               from impinging sprays.  Int J Heat Mass Transf,  41(20):   droplets containing carbon nanotubes: A study of
               3037–3054.
                                                                  evaporation dynamics and CNT alignment for printed
            92.  Laan N, de Bruin KG, Bartolo D,  et al., 2014, Maximum   electronics. Nanoscale, 11(22):10603–10614.
               diameter of impacting liquid droplets.  Phys Rev Appl,   105. Nguyen TA, Nguyen AV, Hampton MA,  et  al., 2012,
               2(4):044018.
                                                                  Theoretical and experimental analysis of droplet evaporation
               https//doi.org/10.1103/PhysRevApplied.2.044018     on solid surfaces. Chem Eng Sci, 69(1):522–529.
            93.  Yarin AL, 2006, Drop impact dynamics: Splashing, spreading,   106. Shanahan M, Sefiane K, Moffat J, 2011, Dependence of
               receding, bouncing…. Annu Rev Fluid Mech, 38:159–192.  volatile  droplet lifetime on the  hydrophobicity of the
                                                                  substrate. Langmuir, 27(8):4572–4577.
            94.  Alizadeh A, Bahadur V, Shang W, et al., 2013, Influence of
               substrate elasticity on droplet impact dynamics. Langmuir,   107. Duursma  G,  Sefiane  K,  David  S,  2010,  Advancing  and
               29(14):4520–4524.                                  receding contact lines on patterned structured surfaces.
                                                                  Chem Eng Res Design, 88(5-6):737–743.
               https//doi.org/10.1021/la304767t
                                                               108. Sefiane K, Wilson S, David S, et al., 2009, On the effect of the
            95.  Park SJ, Weon BM, Lee JS,  et al., 2014, Visualization
               of asymmetric wetting ridges on soft solids with X-ray   atmosphere on the evaporation of sessile droplets of water.
               microscopy. Nat Commun, 5(1):4369.                 Phys Fluids, 21(6):062101.
                                                               109. Nguyen PQM, Yeo L-P, Lok B-K,  et al., 2014, Patterned
               https//doi.org/10.1038/ncomms5369
                                                                  surface  with controllable  wettability  for  inkjet  printing
            96.  Tirella A, Vozzi F, De Maria C, et al., 2011, Substrate stiffness   of flexible printed electronics.  ACS Appl Mater Interfaces,
               influences  high resolution  printing of  living  cells with an   6(6):4011–4016.
               ink-jet system. J Biosci Bioeng, 112(1):79–85.
                                                                  https//doi.org/10.1021/am4054546
               https://doi.org/10.1016/j.jbiosc.2011.03.019
                                                               110. Lee JM, Yeong WY, 2015, A preliminary model of time-
            97.  Moreira ALN, Moita AS, Panão MR, 2010, Advances and   pressure dispensing system for bioprinting based on printing
               challenges in explaining fuel spray impingement: How much   and material parameters.  Virtual Phys Prototyp,  10(1):
               of single droplet impact research is useful?  Progr Energy   3–8.
               Combust Sci, 36(5):554–580.
                                                                  https//doi.org/10.1080/17452759.2014.979557
               https://doi.org/10.1016/j.pecs.2010.01.002

            Volume 9 Issue 5 (2023)                        205                         https://doi.org/10.18063/ijb.758
   208   209   210   211   212   213   214   215   216   217   218