Page 212 - IJB-9-5
P. 212
International Journal of Bioprinting Using droplet jetting for bioprinting
60. Ng WL, Huang X, Shkolnikov V, et al., 2021, Controlling regenerative medicine in diabetes. Trends Endocrinol Metab,
droplet impact velocity and droplet volume: Key factors to 32(8):609–622.
achieving high cell viability in sub-nanoliter droplet-based 74. Mandal A, Clegg JR, Anselmo AC, et al., 2020, Hydrogels
bioprinting. Int J Bioprint, 8(1).
in the clinic (in English). Bioeng Transl Med, 5(2):e10158–
https//doi.org/10.18063/ijb.v8i1.424 e10158.
61. Andreotti B, Snoeijer JH, 2020, Statics and dynamics of soft https//doi.org/10.1002/btm2.10158
wetting. Ann Rev Fluid Mech, 52(1):285–308.
75. Salg GA, Giese NA, Schenk M, et al., 2019, The emerging
https//doi.org/10.1146/annurev-fluid-010719-060147 field of pancreatic tissue engineering: A systematic review
and evidence map of scaffold materials and scaffolding
62. Aljedaani AB, Wang C, Jetly A, et al., 2018, Experiments on techniques for insulin-secreting cells. J Tissue Eng,
the breakup of drop-impact crowns by Marangoni holes. J 10:2041731419884708.
Fluid Mech, 844:162–186.
76. Dang TT, Nikkhah M, Memic A, et al., 2014, Chapter
https//doi.org/10.1017/jfm.2018.178
19—Polymeric biomaterials for implantable prostheses, in
63. Han X, Li J, Tang X, et al., 2022, Droplet bouncing: Natural and Synthetic Biomedical Polymers, SG Kumbar, CT
Fundamentals, regulations, and applications. Small, Laurencin, M Deng, Eds. Oxford: Elsevier, 309–331.
18(22):2200277.
77. Wang S, Lee JM, Yeong WY, 2015, Smart hydrogels for 3D
https://doi.org/10.1002/smll.202200277. bioprinting. Int J Bioprint, 1(1):12.
64. Rein M, 1993, Phenomena of liquid drop impact on solid https//doi.org/10.18063/ijb.2015.01.005.
and liquid surfaces. Fluid Dynamics Res, 12(2):61–93.
78. Nele V, Wojciechowski JP, Armstrong JPK, et al., 2020,
65. Rodriguez F, Mesler R, 1985, Some drops don’t splash. J Tailoring gelation mechanisms for advanced hydrogel
Colloid Interface Sci, 106(2):347–352. applications. Adv Funct Mater, 30(42):2002759.
https://doi.org/10.1016/S0021-9797(85)80008-4 https://doi.org/10.1002/adfm.202002759
66. Blanchette F, Bigioni TP, 2006, Partial coalescence of drops 79. Boulogne F, Ingremeau F, Limat L, et al., 2016, Tuning the
at liquid interfaces. Nat Phys, 2(4):254–257. receding contact angle on hydrogels by addition of particles.
67. Rodriguez F, Mesler R, 1988, The penetration of drop- Langmuir, 32(22):5573–5579.
formed vortex rings into pools of liquid. J Colloid Interface https//doi.org/10.1021/acs.langmuir.6b01209
Sci, 121(1):121–129.
80. Kajiya T, Daerr A, Narita T, et al., 2011, Dynamics of the
https://doi.org/10.1016/0021-9797(88)90414-6 contact line in wetting and diffusing processes of water
68. Oguz HN, Prosperetti A, 1990, Bubble entrainment by droplets on hydrogel (PAMPS–PAAM) substrates. Soft
the impact of drops on liquid surfaces. J Fluid Mech, 219: Matter, 7(24):11425–11432.
143–179. 81. Veysset D, Kooi SE, Мaznev AA, et al., 2018, High-velocity
https//doi.org/10.1017/S0022112090002890 micro-particle impact on gelatin and synthetic hydrogel.
J Mech Behav Biomed Mater, 86:71–76.
69. Ray B, Biswas G, Sharma A, 2015, Regimes during liquid
drop impact on a liquid pool. J Fluid Mech, 768:492–523. https://doi.org/10.1016/j.jmbbm.2018.06.016
https//doi.org/10.1017/jfm.2015.108 82. Mrozek RA, Leighliter B, Gold CS, et al., 2015, The
relationship between mechanical properties and ballistic
70. Tran T, de Maleprade H, Sun C, et al., 2013, Air entrainment penetration depth in a viscoelastic gel. J Mech Behav Biomed
during impact of droplets on liquid surfaces. J Fluid Mech, Mater, 44:109–120.
726:R3, Art no. R3.
https://doi.org/10.1016/j.jmbbm.2015.01.001
https//doi.org/10.1017/jfm.2013.261
83. Baxter J, Mitragotri S, 2005, Jet-induced skin puncture and
71. Gielen MV, Sleutel P, Benschop J, et al., 2017, Oblique drop its impact on needle-free jet injections: Experimental studies
impact onto a deep liquid pool. Phys Rev Fluids, 2(8):083602. and a predictive model. J Controll Release, 106(3):361–373.
https//doi.org/10.1103/PhysRevFluids.2.083602 https://doi.org/10.1016/j.jconrel.2005.05.023
72. Lee JM, Yeong WY, 2016, Design and printing strategies 84. Schoppink J, Fernandez Rivas D, 2022, Jet injectors:
in 3D bioprinting of cell‐hydrogels: A review. Adv Healthc Perspectives for small volume delivery with lasers. Adv Drug
Mater, 5(22):2856–2865. Deliv Rev, 182:114109.
73. Soetedjo AA, Lee JM, Lau HH, et al., 2021, Tissue https://doi.org/10.1016/j.addr.2021.114109
engineering and 3D printing of bioartificial pancreas for
Volume 9 Issue 5 (2023) 204 https://doi.org/10.18063/ijb.758

