Page 212 - IJB-9-5
P. 212

International Journal of Bioprinting                                     Using droplet jetting for bioprinting



            60.  Ng WL, Huang X, Shkolnikov V, et al., 2021, Controlling   regenerative medicine in diabetes. Trends Endocrinol Metab,
               droplet impact velocity and droplet volume: Key factors to   32(8):609–622.
               achieving high cell viability in sub-nanoliter droplet-based   74.  Mandal A, Clegg JR, Anselmo AC, et al., 2020, Hydrogels
               bioprinting. Int J Bioprint, 8(1).
                                                                  in the clinic (in English). Bioeng Transl Med, 5(2):e10158–
               https//doi.org/10.18063/ijb.v8i1.424               e10158.
            61.  Andreotti B, Snoeijer JH, 2020, Statics and dynamics of soft   https//doi.org/10.1002/btm2.10158
               wetting. Ann Rev Fluid Mech, 52(1):285–308.
                                                               75.  Salg GA, Giese NA, Schenk M, et al., 2019, The emerging
               https//doi.org/10.1146/annurev-fluid-010719-060147  field of pancreatic tissue engineering: A systematic review
                                                                  and  evidence  map  of  scaffold  materials  and  scaffolding
            62.  Aljedaani AB, Wang C, Jetly A, et al., 2018, Experiments on   techniques for insulin-secreting cells.  J  Tissue  Eng,
               the breakup of drop-impact crowns by Marangoni holes. J   10:2041731419884708.
               Fluid Mech, 844:162–186.
                                                               76.  Dang TT, Nikkhah M, Memic A,  et  al., 2014, Chapter
               https//doi.org/10.1017/jfm.2018.178
                                                                  19—Polymeric biomaterials for implantable prostheses, in
            63.  Han X, Li J, Tang X, et al., 2022, Droplet bouncing:   Natural and Synthetic Biomedical Polymers, SG Kumbar, CT
               Fundamentals,  regulations, and  applications.  Small,   Laurencin, M Deng, Eds. Oxford: Elsevier, 309–331.
               18(22):2200277.
                                                               77.  Wang S, Lee JM, Yeong WY, 2015, Smart hydrogels for 3D
               https://doi.org/10.1002/smll.202200277.            bioprinting. Int J Bioprint, 1(1):12.
            64.  Rein M, 1993, Phenomena of liquid drop impact on solid   https//doi.org/10.18063/ijb.2015.01.005.
               and liquid surfaces. Fluid Dynamics Res, 12(2):61–93.
                                                               78.  Nele V, Wojciechowski JP, Armstrong JPK,  et al., 2020,
            65.  Rodriguez F, Mesler R, 1985, Some drops don’t splash.  J   Tailoring gelation mechanisms for advanced hydrogel
               Colloid Interface Sci, 106(2):347–352.             applications. Adv Funct Mater, 30(42):2002759.
               https://doi.org/10.1016/S0021-9797(85)80008-4      https://doi.org/10.1002/adfm.202002759
            66.  Blanchette F, Bigioni TP, 2006, Partial coalescence of drops   79.  Boulogne F, Ingremeau F, Limat L, et al., 2016, Tuning the
               at liquid interfaces. Nat Phys, 2(4):254–257.      receding contact angle on hydrogels by addition of particles.
            67.  Rodriguez F, Mesler R, 1988, The penetration of drop-  Langmuir, 32(22):5573–5579.
               formed vortex rings into pools of liquid. J Colloid Interface   https//doi.org/10.1021/acs.langmuir.6b01209
               Sci, 121(1):121–129.
                                                               80.  Kajiya T, Daerr A, Narita T, et al., 2011, Dynamics of the
               https://doi.org/10.1016/0021-9797(88)90414-6       contact line in wetting and diffusing processes of water
            68.  Oguz  HN,  Prosperetti  A,  1990,  Bubble  entrainment  by   droplets on hydrogel (PAMPS–PAAM) substrates.  Soft
               the impact of drops on liquid surfaces. J Fluid Mech, 219:   Matter, 7(24):11425–11432.
               143–179.                                        81.  Veysset D, Kooi SE, Мaznev AA, et al., 2018, High-velocity
               https//doi.org/10.1017/S0022112090002890           micro-particle impact on gelatin and synthetic hydrogel.
                                                                  J Mech Behav Biomed Mater, 86:71–76.
            69.  Ray B, Biswas G, Sharma A, 2015, Regimes during liquid
               drop impact on a liquid pool. J Fluid Mech, 768:492–523.  https://doi.org/10.1016/j.jmbbm.2018.06.016

               https//doi.org/10.1017/jfm.2015.108             82.  Mrozek RA, Leighliter B, Gold CS, et al., 2015, The
                                                                  relationship  between  mechanical  properties  and  ballistic
            70.  Tran T, de Maleprade H, Sun C, et al., 2013, Air entrainment   penetration depth in a viscoelastic gel. J Mech Behav Biomed
               during impact of droplets on liquid surfaces. J Fluid Mech,   Mater, 44:109–120.
               726:R3, Art no. R3.
                                                                  https://doi.org/10.1016/j.jmbbm.2015.01.001
               https//doi.org/10.1017/jfm.2013.261
                                                               83.  Baxter J, Mitragotri S, 2005, Jet-induced skin puncture and
            71.  Gielen MV, Sleutel P, Benschop J, et al., 2017, Oblique drop   its impact on needle-free jet injections: Experimental studies
               impact onto a deep liquid pool. Phys Rev Fluids, 2(8):083602.  and a predictive model. J Controll Release, 106(3):361–373.
               https//doi.org/10.1103/PhysRevFluids.2.083602      https://doi.org/10.1016/j.jconrel.2005.05.023
            72.  Lee JM, Yeong WY, 2016, Design and printing strategies   84.  Schoppink J, Fernandez Rivas D, 2022, Jet injectors:
               in 3D bioprinting of cell‐hydrogels: A review. Adv Healthc   Perspectives for small volume delivery with lasers. Adv Drug
               Mater, 5(22):2856–2865.                            Deliv Rev, 182:114109.
            73.  Soetedjo AA, Lee JM, Lau HH, et al., 2021, Tissue   https://doi.org/10.1016/j.addr.2021.114109
               engineering and 3D printing of bioartificial pancreas for


            Volume 9 Issue 5 (2023)                        204                         https://doi.org/10.18063/ijb.758
   207   208   209   210   211   212   213   214   215   216   217