Page 60 - IJB-9-5
        P. 60
     International Journal of Bioprinting                         Precise fabrication of engineered vascular networks
            18.  Kolesky  DB, Truby  RL, Gladman  AS,  et  al., 2014,  3D   28.  Dabiri SMH, Samiei E, Shojaei S, et al., 2021, Multifunctional
               bioprinting of vascularized, heterogeneous cell‐laden tissue   thermoresponsive  microcarriers for  high‐throughput cell
               constructs. Adv Mater, 26(19): 3124–3130.          culture and enzyme‐free cell harvesting.  Small, 17(44):
                                                                  2103192.
               https://doi.org/10.1002/adma.201305506.
                                                                  https://doi.org/10.1002/smll.202103192.
            19.  Kolesky DB, Homan KA, Skylar-Scott MA,  et  al., 2016,
               Three-dimensional bioprinting of thick vascularized tissues.   29.  Cui H, Wang W, Shi L, et al., 2020, Superwettable surface
               Proc Natl Acad Sci, 113(12): 3179–3184.            engineering  in controlling  cell  adhesion  for emerging
                                                                  bioapplications. Small Methods, 4(12): 2000573.
               https://www.pnas.org/lookup/suppl/doi:10.1073/
               pnas.1521342113/-/DCSupplemental.                  https://doi.org/10.1002/smtd.202000573.
            20.  Lin NYC, Homan KA, Robinson SS,  et al., 2019, Renal   30.  Liu M, Wu C, Ke L,  et al., 2021, Emerging biomaterials‐
               reabsorption in 3D vascularized proximal tubule models.   based strategies for inhibiting vasculature function in cancer
               Proc Natl Acad Sci, 116(12): 5399–5404.            therapy. Small Methods, 5(7): 2100347.
               https://www.pnas.org/lookup/suppl/doi:10.1073/     https://doi.org/10.1002/smtd.202100347.
               pnas.1815208116/-/DCSupplemental.
                                                               31.  Downs FG, Lunn DJ, Booth MJ, et al., 2020, Multi-responsive
            21.  Neufeld L, Yeini E, Reisman N, et al., 2021, Microengineered   hydrogel structures from patterned droplet networks. Nat
               perfusable 3D-bioprinted glioblastoma model for in vivo   Chem, 12: 363–371.
               mimicry of tumor microenvironment.  Sci Adv, 7(14):   https://doi.org/10.1038/s41557-020-0444-1.
               eabi9119.
                                                               32.  Kan X, Wu C, Wen L, et al., 2020, Biomimetic nanochannels:
               https://www.science.org/doi/10.1126/sciadv.abi9119.
                                                                  From fabrication principles to theoretical insights.  Small
            22.  Wu C-J, Gaharwar AK, Chan BK, et al., 2011, Mechanically   Methods, 6(4): 2101255.
               tough pluronic F127/laponite nanocomposite hydrogels   https://doi.org/10.1002/smtd.202101255.
               from covalently and physically cross-linked networks.
               Macromolecules, 44(20): 8215–8224.              33.  Wang X, Yu Y, Yang C, et al., 2021, Microfluidic 3D printing
                                                                  responsive scaffolds with biomimetic enrichment channels
               https://doi.org/10.1021/ma200562k.
                                                                  for bone regeneration. Adv Funct Mater, 31(40): 2105190.
            23.  Hu M, Dailamy A, Lei XY, et al., 2018, Facile engineering   https://doi.org/10.1002/adfm.202105190.
               of long‐term culturable ex vivo vascularized tissues using
               biologically derived matrices.  Adv Healthc Mater, 7(23):   34.  Li S, Wang W, Li W,  et al., 2021, Fabrication of
               1800845.                                           thermoresponsive hydrogel scaffolds with engineered
                                                                  microscale vasculatures. Adv Funct Mater, 31(27): 2102685.
               https://doi.org/10.1002/adhm.201800845.
                                                                  https://doi.org/10.1002/adfm.202102685.
            24.  Tocchio A, Tamplenizza M, Martello F, et al., 2015, Versatile
               fabrication of vascularizable scaffolds for large tissue   35.  Luo Z, Che J, Sun L, et al., 2021, Microfluidic electrospray
               engineering in bioreactor. Biomaterials, 45: 124–131.  photo-crosslinkable κ-Carrageenan microparticles for
                                                                  wound healing. Eng Reg, 2: 257–262.
               http://dx.doi.org/10.1016/j.biomaterials.2014.12.031.
                                                                  https://doi.org/10.1016/j.engreg.2021.10.002.
            25.  Li S, Liu Y-Y, Liu L-J, et al., 2016, A versatile method for
               fabricating tissue engineering scaffolds with a three-  36.  Layek RK, Uddin ME, Kim NH, et al., 2017, Noncovalent
               dimensional channel for prevasculature networks. ACS Appl   functionalization of reduced graphene oxide with pluronic
               Mater Interfaces, 8(38): 25096–25103.              F127 and its nanocomposites with gum arabic. Compos B
                                                                  Eng, 128: 155–163.
               https://doi.org/10.1021/acsami.6b07725.
                                                                  https://doi.org/10.1016/j.compositesb.2017.07.010.
            26.  Yang X, Zhang C, Deng D,  et al., 2022, Multiple stimuli-
               responsive MXene-based hydrogel as intelligent drug   37.  Schmidt S, Zeiser M, Hellweg T, et al., 2010, Adhesion and
               delivery carriers for deep chronic wound healing.  Small,   mechanical properties of PNIPAM microgel films and their
               18(5): 2104368.                                    potential use as switchable cell culture substrates. Adv Funct
                                                                  Mater, 20: 3235–3243.
               https://doi.org/10.1002/smll.202104368.
                                                                  https://doi.org/10.1002/adfm.201000730.
            27.  Zhang Z, Chen Z, Wang Y, et al., 2019, Bioinspired bilayer
               structural  color  hydrogel  actuator  with  multienvironment   38.  Zhu CH, Lu Y, Peng J,  et al., 2012, Photothermally
               responsiveness  and survivability.  Small Methods,  3(12):   sensitive poly(N-isopropylacrylamide)/graphene oxide
               1900519.                                           nanocomposite hydrogels as remote light-controlled liquid
                                                                  microvalves. Adv Funct Mater, 22(19): 4017–4022.
               https://doi.org/10.1002/smtd.201900519.
                                                                  https://doi.org/10.1002/adfm.201201020.
            Volume 9 Issue 5 (2023)                         52                         https://doi.org/10.18063/ijb.749





