Page 60 - IJB-9-5
P. 60
International Journal of Bioprinting Precise fabrication of engineered vascular networks
18. Kolesky DB, Truby RL, Gladman AS, et al., 2014, 3D 28. Dabiri SMH, Samiei E, Shojaei S, et al., 2021, Multifunctional
bioprinting of vascularized, heterogeneous cell‐laden tissue thermoresponsive microcarriers for high‐throughput cell
constructs. Adv Mater, 26(19): 3124–3130. culture and enzyme‐free cell harvesting. Small, 17(44):
2103192.
https://doi.org/10.1002/adma.201305506.
https://doi.org/10.1002/smll.202103192.
19. Kolesky DB, Homan KA, Skylar-Scott MA, et al., 2016,
Three-dimensional bioprinting of thick vascularized tissues. 29. Cui H, Wang W, Shi L, et al., 2020, Superwettable surface
Proc Natl Acad Sci, 113(12): 3179–3184. engineering in controlling cell adhesion for emerging
bioapplications. Small Methods, 4(12): 2000573.
https://www.pnas.org/lookup/suppl/doi:10.1073/
pnas.1521342113/-/DCSupplemental. https://doi.org/10.1002/smtd.202000573.
20. Lin NYC, Homan KA, Robinson SS, et al., 2019, Renal 30. Liu M, Wu C, Ke L, et al., 2021, Emerging biomaterials‐
reabsorption in 3D vascularized proximal tubule models. based strategies for inhibiting vasculature function in cancer
Proc Natl Acad Sci, 116(12): 5399–5404. therapy. Small Methods, 5(7): 2100347.
https://www.pnas.org/lookup/suppl/doi:10.1073/ https://doi.org/10.1002/smtd.202100347.
pnas.1815208116/-/DCSupplemental.
31. Downs FG, Lunn DJ, Booth MJ, et al., 2020, Multi-responsive
21. Neufeld L, Yeini E, Reisman N, et al., 2021, Microengineered hydrogel structures from patterned droplet networks. Nat
perfusable 3D-bioprinted glioblastoma model for in vivo Chem, 12: 363–371.
mimicry of tumor microenvironment. Sci Adv, 7(14): https://doi.org/10.1038/s41557-020-0444-1.
eabi9119.
32. Kan X, Wu C, Wen L, et al., 2020, Biomimetic nanochannels:
https://www.science.org/doi/10.1126/sciadv.abi9119.
From fabrication principles to theoretical insights. Small
22. Wu C-J, Gaharwar AK, Chan BK, et al., 2011, Mechanically Methods, 6(4): 2101255.
tough pluronic F127/laponite nanocomposite hydrogels https://doi.org/10.1002/smtd.202101255.
from covalently and physically cross-linked networks.
Macromolecules, 44(20): 8215–8224. 33. Wang X, Yu Y, Yang C, et al., 2021, Microfluidic 3D printing
responsive scaffolds with biomimetic enrichment channels
https://doi.org/10.1021/ma200562k.
for bone regeneration. Adv Funct Mater, 31(40): 2105190.
23. Hu M, Dailamy A, Lei XY, et al., 2018, Facile engineering https://doi.org/10.1002/adfm.202105190.
of long‐term culturable ex vivo vascularized tissues using
biologically derived matrices. Adv Healthc Mater, 7(23): 34. Li S, Wang W, Li W, et al., 2021, Fabrication of
1800845. thermoresponsive hydrogel scaffolds with engineered
microscale vasculatures. Adv Funct Mater, 31(27): 2102685.
https://doi.org/10.1002/adhm.201800845.
https://doi.org/10.1002/adfm.202102685.
24. Tocchio A, Tamplenizza M, Martello F, et al., 2015, Versatile
fabrication of vascularizable scaffolds for large tissue 35. Luo Z, Che J, Sun L, et al., 2021, Microfluidic electrospray
engineering in bioreactor. Biomaterials, 45: 124–131. photo-crosslinkable κ-Carrageenan microparticles for
wound healing. Eng Reg, 2: 257–262.
http://dx.doi.org/10.1016/j.biomaterials.2014.12.031.
https://doi.org/10.1016/j.engreg.2021.10.002.
25. Li S, Liu Y-Y, Liu L-J, et al., 2016, A versatile method for
fabricating tissue engineering scaffolds with a three- 36. Layek RK, Uddin ME, Kim NH, et al., 2017, Noncovalent
dimensional channel for prevasculature networks. ACS Appl functionalization of reduced graphene oxide with pluronic
Mater Interfaces, 8(38): 25096–25103. F127 and its nanocomposites with gum arabic. Compos B
Eng, 128: 155–163.
https://doi.org/10.1021/acsami.6b07725.
https://doi.org/10.1016/j.compositesb.2017.07.010.
26. Yang X, Zhang C, Deng D, et al., 2022, Multiple stimuli-
responsive MXene-based hydrogel as intelligent drug 37. Schmidt S, Zeiser M, Hellweg T, et al., 2010, Adhesion and
delivery carriers for deep chronic wound healing. Small, mechanical properties of PNIPAM microgel films and their
18(5): 2104368. potential use as switchable cell culture substrates. Adv Funct
Mater, 20: 3235–3243.
https://doi.org/10.1002/smll.202104368.
https://doi.org/10.1002/adfm.201000730.
27. Zhang Z, Chen Z, Wang Y, et al., 2019, Bioinspired bilayer
structural color hydrogel actuator with multienvironment 38. Zhu CH, Lu Y, Peng J, et al., 2012, Photothermally
responsiveness and survivability. Small Methods, 3(12): sensitive poly(N-isopropylacrylamide)/graphene oxide
1900519. nanocomposite hydrogels as remote light-controlled liquid
microvalves. Adv Funct Mater, 22(19): 4017–4022.
https://doi.org/10.1002/smtd.201900519.
https://doi.org/10.1002/adfm.201201020.
Volume 9 Issue 5 (2023) 52 https://doi.org/10.18063/ijb.749

