Page 158 - IJB-9-6
P. 158

International Journal of Bioprinting                      3D printed bioactive dressings for burn wound treatment




            64.  Singhvi G, Singh M, 2011, In-vitro drug release   75.  Visser H, Dubé CE, Armstrong WH, et al., 2002, FTIR spectra
               characterization models. Int J Pharm Stud Res, 2(1): 77–84.   and normal-mode analysis of a tetranuclear manganese
                                                                  adamantane-like complex in two electrochemically prepared
            65.  Altavilla D, Saitta A, Cucinotta D, et al., 2001, Inhibition of
               lipid peroxidation restores impaired vascular endothelial   oxidation states: Relevance to the oxygen-evolving complex
               growth factor expression and stimulates wound healing and   of photosystem II. J Am Chem Soc, 124(37): 11008–11017.
               angiogenesis in the genetically diabetic mouse.  Diabetes,   76.  Zahir  MH, Rahman MM, Irshad K,  et  al., 2019,  Shape-
               50(3): 667–674.                                    stabilized phase change materials for solar energy storage:
                                                                  MgO and Mg(OH)  mixed with polyethylene glycol.
            66.  Koehler J, Brandl FP, Goepferich AM, 2018, Hydrogel              2
               wound dressings for bioactive treatment of acute and   Nanomaterials, 9(12): 1773.
               chronic wounds. Eur Polym J, 100: 1–11.         77.  Łabowska  MB,  Skrodzka  M,  Sicińska  H,  et al.,  2023,
                                                                  Influence of cross-linking conditions on drying kinetics of
            67.  Pawlaczyk M, Lelonkiewicz M, Wieczorowski M, 2013, Age-
               dependent biomechanical properties of the skin.  Postepy   alginate hydrogel. Gels, 9(1): 63.
               Dermatol Alergol, 30(5): 302–306.               78.  Paul D, 2011, Elaborations on the Higuchi model for drug
                                                                  delivery. Int J Pharmaceut, 418(1): 13–17.
               https://doi.org/10.5114/pdia.2013.38359
                                                               79.  Siepmann J, Peppas NA, 2011, Higuchi equation: Derivation,
            68.  Li C, Guan G, Reif R,  et al., 2012, Determining elastic
               properties of skin by measuring surface waves from an   applications, use and misuse. Int J Pharm, 418(1): 6–12.
               impulse mechanical stimulus using phase-sensitive optical   https://doi.org/10.1016/j.ijpharm.2011.03.051
               coherence tomography. J R Soc Interface, 9(70): 831–841.
                                                               80.  Klimek K, Ginalska G, 2020, Proteins and peptides as important
            69.  Peretiatko CDS, Hupalo EA, Da Rocha Campos JR, et al.,   modifiers  of  the  polymer  scaffolds  for  tissue  engineering
               2018, Efficiency of zinc and calcium ion crosslinking in   applications: A review. Polymers (Basel), 12(4): 1–38.
               alginate-coated nitrogen fertilizer. Orbital Electron J Chem,   https://doi.org/10.3390/polym12040844
               10: 218–225.
                                                               81.  Frew Q, Rennekampff H-O, Dziewulski P,  et al., 2019,
            70.  Swamy BJRS, Vijay R, Babu PR, et al., 2016, Influence of γ-ray-  Betulin wound gel accelerated healing of superficial partial
               induced effects on dielectric dispersion of CuO-doped calcium   thickness burns: Results of a randomized, intra‐individually
               fluoroborophosphate glass system. Ionics, 22: 1625–1634.
                                                                  controlled, phase III trial with 12‐months follow‐up. Burns,
            71.  Zhang P, Pu Y, Wu Y, et al., 2016, Influence of replacement   45(4): 876–890.
               of B O  by SiO  on the structure and magnetic properties of   https://doi.org/10.1016/j.burns.2018.10.019
                  2
                          2
                    3
               BaO-Fe O -SiO -B O -CeO  glass-ceramics. J Superconduct
                       3
                               3
                                   2
                           2
                             2
                     2
               Novel Magn, 29: 1557–1560.                      82.  Singer AJ, Boyce ST, 2017, Burn wound healing and tissue
                                                                  engineering. J Burn Care Res, 38(3): e605–e613.
            72.  Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, et al., 2017,
               Novel layered double hydroxides-hydroxyapatite/gelatin bone   https://doi.org/10.1097/bcr.0000000000000538
               tissue engineering scaffolds: Fabrication, characterization,   83.  Benson A, Dickson WA, Boyce DE, 2006, ABC of wound
               and in vivo study. Mater Sci Eng C, 76: 701–714.   healing: Burns. BMJ, 333(Suppl S3): 283–339.
            73.  Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A,  et al.,   84.  Jones K, 2015,  Fibrotic Response to Biomaterials and
               2017, Release behavior and signaling effect of vitamin D3   All  Associated  Sequence  of  Fibrosis.  Host  Response  to
               in  layered  double  hydroxides-hydroxyapatite/gelatin  bone   Biomaterials. Elsevier, Amsterdam, Netherlands, 189–237.
               tissue engineering scaffold: An in vitro evaluation. Colloids
               Surfaces B Biointerfaces, 158: 697–708.         85.  Kolimi P, Narala S, Nyavanandi D, et al., 2022, Innovative
                                                                  treatment strategies to accelerate wound healing: Trajectory
            74.  Köse D, Necefoğlu H, 2008, Synthesis and characterization of   and recent advancements. Cells; 11(15): 1–46.
               bis (nicotinamide) m-hydroxybenzoate complexes of Co (II),
               Ni (II), Cu (II) and Zn (II). J Therm Anal Calorim, 93: 509–514.   https://doi.org/10.3390/cells11152439














            Volume 9 Issue 6 (2023)                        150                         https://doi.org/10.36922/ijb.0118
   153   154   155   156   157   158   159   160   161   162   163