Page 456 - IJB-9-6
P. 456

International Journal of Bioprinting                                         3D bioprinting for lung tissue




               http://doi.org/10.1038/s41598-018-31880-x       75.  Liu W, Thomopoulos S, Xia Y, 2012, Electrospun nanofibers
                                                                  for regenerative medicine. Adv Healthc Mater, 1(1): 10–25.
            64.  Falcones B, Sanz-Fraile H, Marhuenda E, et al., 2021,
               Bioprintable lung extracellular matrix hydrogel scaffolds for      http://doi.org/10.1002/adhm.201100021
               3D culture of mesenchymal stromal cells. Polymers (Basel),   76.  Bakht SM, Gomez‐Florit M, Lamers T, et al., 2021, 3D
               13(14): 2350.
                                                                  bioprinting of  miniaturized  tissues  embedded  in self‐
               http://doi.org/10.3390/polym13142350               assembled nanoparticle‐based fibrillar platforms. Adv Funct
                                                                  Mater, 31(46): 2104245.
            65.  Zhang YS, Davoudi F, Walch P, et al., 2016, Bioprinted
               thrombosis-on-a-chip. Lab Chip, 16(21): 4097–4105.     http://doi.org/10.1002/adfm.202104245
               http://doi.org/10.1039/c6lc00380j               77.  Halappanavar S, Nymark P, Krug HF, et al., 2021, Non-
                                                                  animal strategies for toxicity assessment of nanoscale
            66.  Wang X, Zhang X, Dai X, et  al., 2018, Tumor-like lung
               cancer model based on 3D bioprinting. Biotech, 8(12): 501.   materials: Role of adverse outcome pathways in the selection
                                                                  of endpoints. Small, 17(15): e2007628.
               http://doi.org/10.1007/s13205-018-1519-1
                                                                  http://doi.org/10.1002/smll.202007628
            67.  Teixeira AI, McKie GA, Foley JD, et al., 2006, The effect
               of environmental factors on the response of human   78.  Sisler JD, Pirela SV, Friend S, et al., 2015, Small airway
               corneal epithelial  cells  to nanoscale  substrate  topography.   epithelial cells exposure to printer-emitted engineered
               Biomaterials, 27(21): 3945–3954.                   nanoparticles induces cellular effects on human
                                                                  microvascular endothelial cells in an alveolar-capillary co-
               http://doi.org/10.1016/j.biomaterials.2006.01.044  culture model. Nanotoxicology, 9(6): 769–779.
            68.  Melchor-Martínez EM, Torres Castillo NE, Macias-Garbett      http://doi.org/10.3109/17435390.2014.976603
               R, et al., 2021, Modern world applications for nano-bio   79.  Skardal A, Zhang J, McCoard L, et al., 2010, Dynamically
               materials: Tissue engineering and COVID-19. Front Bioeng
               Biotechnol, 9: 597958.                             crosslinked gold nanoparticle - hyaluronan hydrogels. Adv
                                                                  Mater, 22(42): 4736–4740.
               http://doi.org/10.3389/fbioe.2021.597958
                                                                  http://doi.org/10.1002/adma.201001436
            69.  Xu F, Inci F, Mullick O, et al., 2012, Release of magnetic
               nanoparticles from cell-encapsulating biodegradable   80.  Huang L, Yuan W, Hong Y, et al., 2021, 3D printed hydrogels
               nanobiomaterials. ACS Nano, 6(8): 6640–6649.       with oxidized cellulose nanofibers and silk fibroin for the
                                                                  proliferation of lung epithelial stem cells. Cellulose (Lond),
               http://doi.org/10.1021/nn300902w                   28(1): 241–257.
            70.  Jia Y, Wang Y, Niu L, et al., 2021, The plasticity of nanofibrous      http://doi.org/10.1007/s10570-020-03526-7
               matrix regulates fibroblast activation in fibrosis. Adv Healthc   81.  Skardal A, Murphy SV, Devarasetty M, et al., 2017, Multi-
               Mater, 10(8): e2001856.
                                                                  tissue interactions in an integrated three-tissue organ-on-a-
               http://doi.org/10.1002/adhm.202001856              chip platform. Sci Rep, 7(1): 8837.
            71.  Liu H, Du C, Liao L, et al., 2022, Approaching      http://doi.org/10.1038/s41598-017-08879-x
               intrinsic dynamics of MXenes hybrid hydrogel for 3D
               printed  multimodal  intelligent  devices  with  ultrahigh   82.  Bhattacharyya A, Janarthanan G, Noh I, 2021, Nano-
               superelasticity and temperature sensitivity. Nat Commun,   biomaterials for designing functional bioinks towards
               13(1): 3420.                                       complex tissue and organ regeneration in 3D bioprinting.
                                                                  Addit Manuf, 37: 101639.
               http://doi.org/10.1038/s41467-022-31051-7
                                                                  http://doi.org/10.1016/j.addma.2020.101639
            72.  Malda J, Visser J, Melchels FP, et al., 2013, 25th anniversary
               article: Engineering hydrogels for biofabrication. Adv Mater,   83.  Dong Z, Cui H, Zhang H, et al., 2021, 3D printing of
               25(36): 5011–5028.                                 inherently nanoporous polymers via polymerization-
                                                                  induced phase separation. Nat Commun, 12(1): 247.
               http://doi.org/10.1002/adma.201302042
                                                                  http://doi.org/10.1038/s41467-020-20498-1
            73.  Hollister SJ, 2005, Porous scaffold design for tissue
               engineering. Nat Mater, 4(7): 518–524.          84.  Pérez RA, Won J-E, Knowles JC, et al., 2013, Naturally
                                                                  and synthetic smart composite biomaterials for tissue
               http://doi.org/10.1038/nmat1421                    regeneration. Adv Drug Delivery Rev, 65(4): 471–496.
            74.  Alarçin E, Guan X, Kashaf SS, et al., 2016, Recreating      http://doi.org/10.1016/j.addr.2012.03.009
               composition, structure, functionalities of tissues at nanoscale
               for regenerative medicine. Regen Med, 11(8): 849–858.   85.  Gao B, Yang Q, Zhao X, et al., 2016, 4D bioprinting for
                                                                  biomedical applications. Trends Biotechnol, 34(9): 746–756.
               http://doi.org/10.2217/rme-2016-0120
                                                                  http://doi.org/10.1016/j.tibtech.2016.03.004


            Volume 9 Issue 6 (2023)                        448                          https://doi.org/10.36922/ijb.1166
   451   452   453   454   455   456   457   458   459   460   461