Page 456 - IJB-9-6
P. 456
International Journal of Bioprinting 3D bioprinting for lung tissue
http://doi.org/10.1038/s41598-018-31880-x 75. Liu W, Thomopoulos S, Xia Y, 2012, Electrospun nanofibers
for regenerative medicine. Adv Healthc Mater, 1(1): 10–25.
64. Falcones B, Sanz-Fraile H, Marhuenda E, et al., 2021,
Bioprintable lung extracellular matrix hydrogel scaffolds for http://doi.org/10.1002/adhm.201100021
3D culture of mesenchymal stromal cells. Polymers (Basel), 76. Bakht SM, Gomez‐Florit M, Lamers T, et al., 2021, 3D
13(14): 2350.
bioprinting of miniaturized tissues embedded in self‐
http://doi.org/10.3390/polym13142350 assembled nanoparticle‐based fibrillar platforms. Adv Funct
Mater, 31(46): 2104245.
65. Zhang YS, Davoudi F, Walch P, et al., 2016, Bioprinted
thrombosis-on-a-chip. Lab Chip, 16(21): 4097–4105. http://doi.org/10.1002/adfm.202104245
http://doi.org/10.1039/c6lc00380j 77. Halappanavar S, Nymark P, Krug HF, et al., 2021, Non-
animal strategies for toxicity assessment of nanoscale
66. Wang X, Zhang X, Dai X, et al., 2018, Tumor-like lung
cancer model based on 3D bioprinting. Biotech, 8(12): 501. materials: Role of adverse outcome pathways in the selection
of endpoints. Small, 17(15): e2007628.
http://doi.org/10.1007/s13205-018-1519-1
http://doi.org/10.1002/smll.202007628
67. Teixeira AI, McKie GA, Foley JD, et al., 2006, The effect
of environmental factors on the response of human 78. Sisler JD, Pirela SV, Friend S, et al., 2015, Small airway
corneal epithelial cells to nanoscale substrate topography. epithelial cells exposure to printer-emitted engineered
Biomaterials, 27(21): 3945–3954. nanoparticles induces cellular effects on human
microvascular endothelial cells in an alveolar-capillary co-
http://doi.org/10.1016/j.biomaterials.2006.01.044 culture model. Nanotoxicology, 9(6): 769–779.
68. Melchor-Martínez EM, Torres Castillo NE, Macias-Garbett http://doi.org/10.3109/17435390.2014.976603
R, et al., 2021, Modern world applications for nano-bio 79. Skardal A, Zhang J, McCoard L, et al., 2010, Dynamically
materials: Tissue engineering and COVID-19. Front Bioeng
Biotechnol, 9: 597958. crosslinked gold nanoparticle - hyaluronan hydrogels. Adv
Mater, 22(42): 4736–4740.
http://doi.org/10.3389/fbioe.2021.597958
http://doi.org/10.1002/adma.201001436
69. Xu F, Inci F, Mullick O, et al., 2012, Release of magnetic
nanoparticles from cell-encapsulating biodegradable 80. Huang L, Yuan W, Hong Y, et al., 2021, 3D printed hydrogels
nanobiomaterials. ACS Nano, 6(8): 6640–6649. with oxidized cellulose nanofibers and silk fibroin for the
proliferation of lung epithelial stem cells. Cellulose (Lond),
http://doi.org/10.1021/nn300902w 28(1): 241–257.
70. Jia Y, Wang Y, Niu L, et al., 2021, The plasticity of nanofibrous http://doi.org/10.1007/s10570-020-03526-7
matrix regulates fibroblast activation in fibrosis. Adv Healthc 81. Skardal A, Murphy SV, Devarasetty M, et al., 2017, Multi-
Mater, 10(8): e2001856.
tissue interactions in an integrated three-tissue organ-on-a-
http://doi.org/10.1002/adhm.202001856 chip platform. Sci Rep, 7(1): 8837.
71. Liu H, Du C, Liao L, et al., 2022, Approaching http://doi.org/10.1038/s41598-017-08879-x
intrinsic dynamics of MXenes hybrid hydrogel for 3D
printed multimodal intelligent devices with ultrahigh 82. Bhattacharyya A, Janarthanan G, Noh I, 2021, Nano-
superelasticity and temperature sensitivity. Nat Commun, biomaterials for designing functional bioinks towards
13(1): 3420. complex tissue and organ regeneration in 3D bioprinting.
Addit Manuf, 37: 101639.
http://doi.org/10.1038/s41467-022-31051-7
http://doi.org/10.1016/j.addma.2020.101639
72. Malda J, Visser J, Melchels FP, et al., 2013, 25th anniversary
article: Engineering hydrogels for biofabrication. Adv Mater, 83. Dong Z, Cui H, Zhang H, et al., 2021, 3D printing of
25(36): 5011–5028. inherently nanoporous polymers via polymerization-
induced phase separation. Nat Commun, 12(1): 247.
http://doi.org/10.1002/adma.201302042
http://doi.org/10.1038/s41467-020-20498-1
73. Hollister SJ, 2005, Porous scaffold design for tissue
engineering. Nat Mater, 4(7): 518–524. 84. Pérez RA, Won J-E, Knowles JC, et al., 2013, Naturally
and synthetic smart composite biomaterials for tissue
http://doi.org/10.1038/nmat1421 regeneration. Adv Drug Delivery Rev, 65(4): 471–496.
74. Alarçin E, Guan X, Kashaf SS, et al., 2016, Recreating http://doi.org/10.1016/j.addr.2012.03.009
composition, structure, functionalities of tissues at nanoscale
for regenerative medicine. Regen Med, 11(8): 849–858. 85. Gao B, Yang Q, Zhao X, et al., 2016, 4D bioprinting for
biomedical applications. Trends Biotechnol, 34(9): 746–756.
http://doi.org/10.2217/rme-2016-0120
http://doi.org/10.1016/j.tibtech.2016.03.004
Volume 9 Issue 6 (2023) 448 https://doi.org/10.36922/ijb.1166

