Page 454 - IJB-9-6
P. 454
International Journal of Bioprinting 3D bioprinting for lung tissue
http://doi.org/https://doi.org/10.1016/j.jmst.2016.01.007 30. Brassard JA, Nikolaev M, Hübscher T, et al., 2021,
Recapitulating macro-scale tissue self-organization through
19. Dabaghi M, Carpio MB, Moran-Mirabal JM, et al., 2023, 3D organoid bioprinting. Nat Mater, 20(1): 22–29.
(bio) printing of lungs: Past, present, and future. Eur Respir
J, 61(1): 2200417. http://doi.org/10.1038/s41563-020-00803-5
http://doi.org/10.1183/13993003.00417-2022 31. Raman R, Bashir R, 2017, Biomimicry, biofabrication,
and biohybrid systems: The emergence and evolution of
20. Shakir S, Hackett TL, Mostaço-Guidolin LB, 2022,
Bioengineering lungs: An overview of current methods, biological design. Adv Healthcare Mater, 6(20): 1700496.
requirements, and challenges for constructing scaffolds. http://doi.org/10.1002/adhm.201700496
Front Bioeng Biotechnol, 10: 1011800.
32. Levato R, Jungst T, Scheuring RG, et al., 2020, From shape
http://doi.org/10.3389/fbioe.2022.1011800 to function: The next step in bioprinting. Adv Mat, 32(12):
e1906423.
21. Liu S, Yu J-M, Gan Y-C, et al., 2023, Biomimetic natural
biomaterials for tissue engineering and regenerative http://doi.org/10.1002/adma.201906423
medicine: New biosynthesis methods, recent advances, and 33. Bittner S M, Guo J L, Melchiorri A, et al., 2018, Three-
emerging applications. Mil Med Res, 10(1): 16.
dimensional printing of multilayered tissue engineering
http://doi.org/10.1186/s40779-023-00448-w scaffolds. Mater Today, 21(8): 861–874.
22. Yang J, Dang H, Xu Y, 2022, Recent advancement of http://doi.org/10.1016/j.mattod.2018.02.006
decellularization extracellular matrix for tissue engineering 34. Huo Y, Xu Y, Wu X, et al., 2022, Functional trachea
and biomedical application. Artif Organs, 46(4): 549–567.
reconstruction using 3D-bioprinted native-like tissue
http://doi.org/10.1111/aor.14126 architecture based on designable tissue-specific bioinks. Adv
Sci, 9(29): 2202181.
23. Zhang H, Wang Y, Zheng Z, et al., 2023, Strategies for
improving the 3D printability of decellularized extracellular http://doi.org/https://doi.org/10.1002/advs.202202181
matrix bioink. Theranostics, 13(8): 2562.
35. Grigoryan B, Paulsen SJ, Corbett DC, et al., 2019,
http://doi.org/10.1039/D2BM01273A Multivascular networks and functional intravascular
topologies within biocompatible hydrogels. Science,
24. Kort-Mascort J, Flores-Torres S, Chavez OP, et al., 2023,
Decellularized ECM hydrogels: prior use considerations, 364(6439): 458–464.
applications, and opportunities in tissue engineering and http://doi.org/10.1126/science.aav9750
biofabrication. Biomater Sci, 11(2): 400–431.
36. Ng WL, Ayi TC, Liu Y-C, et al., 2021, Fabrication and
http://doi.org/10.1039/d2bm01273a characterization of 3D bioprinted triple-layered human
alveolar lung models. Int J Bioprint, 7(2): 332.
25. Bock S, Rades T, Rantanen J, et al., 2022, Additive
manufacturing in respiratory sciences-current applications http://doi.org/10.18063/ijb.v7i2.332
and future prospects. Adv Drug Delivery Rev, 186: 114341.
37. Lewis KJR, Tibbitt MW, Zhao Y, et al., 2015, In vitro model
http://doi.org/10.1016/j.addr.2022.114341 alveoli from photodegradable microsphere templates.
Biomater Sci, 3(6): 821–832.
26. Cui H, Nowicki M, Fisher JP, et al., 2017, 3D bioprinting for
organ regeneration. Adv Healthc Mater, 6(1): 1601118. http://doi.org/10.1039/c5bm00034c
http://doi.org/10.1002/adhm.201601118 38. Machino R, Matsumoto K, Taniguchi D, et al., 2019,
Replacement of rat tracheas by layered, trachea-like,
27. Murphy SV, De Coppi P, Atala A, 2020, Opportunities and
challenges of translational 3D bioprinting. Nat Biomed Eng, scaffold-free structures of human cells using a Bio-3D
4(4): 370–380. printing system. Adv Healthc Mater, 8(7): e1800983.
http://doi.org/10.1002/adhm.201800983
http://doi.org/10.1038/s41551-019-0471-7
39. Taniguchi D, Matsumoto K, Tsuchiya T, et al., 2018, Scaffold-
28. Yu C, Schimelman J, Wang P, et al., 2020, Photopolymerizable
biomaterials and light-based 3D printing strategies for free trachea regeneration by tissue engineering with bio-3D
biomedical applications. Chem Rev, 120(19): 10695–10743. printing. Interact Cardiovasc Thorac Surg, 26(5): 745–752.
http://doi.org/10.1093/icvts/ivx444
http://doi.org/10.1021/acs.chemrev.9b00810
40. Kim IG, Park SA, Lee S-H, et al., 2020, Transplantation of
29. Jammalamadaka U, Tappa K, 2018, Recent advances in a 3D-printed tracheal graft combined with iPS cell-derived
biomaterials for 3D printing and tissue engineering. J Funct MSCs and chondrocytes. Sci Rep, 10(1): 4326.
Biomater, 9(1): 22.
http://doi.org/10.1038/s41598-020-61405-4
http://doi.org/10.3390/jfb9010022
Volume 9 Issue 6 (2023) 446 https://doi.org/10.36922/ijb.1166

