Page 454 - IJB-9-6
P. 454

International Journal of Bioprinting                                         3D bioprinting for lung tissue




               http://doi.org/https://doi.org/10.1016/j.jmst.2016.01.007  30.  Brassard JA, Nikolaev M, Hübscher T, et al., 2021,
                                                                  Recapitulating macro-scale tissue self-organization through
            19.  Dabaghi M, Carpio MB, Moran-Mirabal JM, et al., 2023, 3D   organoid bioprinting. Nat Mater, 20(1): 22–29.
               (bio) printing of lungs: Past, present, and future. Eur Respir
               J, 61(1): 2200417.                                 http://doi.org/10.1038/s41563-020-00803-5
               http://doi.org/10.1183/13993003.00417-2022      31.  Raman R, Bashir R, 2017, Biomimicry, biofabrication,
                                                                  and biohybrid systems: The emergence and evolution of
            20.  Shakir S, Hackett TL, Mostaço-Guidolin LB, 2022,
               Bioengineering lungs: An overview of current methods,   biological design. Adv Healthcare Mater, 6(20): 1700496.
               requirements, and challenges for constructing scaffolds.      http://doi.org/10.1002/adhm.201700496
               Front Bioeng Biotechnol, 10: 1011800.
                                                               32.  Levato R, Jungst T, Scheuring RG, et al., 2020, From shape
               http://doi.org/10.3389/fbioe.2022.1011800          to function: The next step in bioprinting. Adv Mat, 32(12):
                                                                  e1906423.
            21.  Liu S, Yu J-M, Gan Y-C, et al., 2023, Biomimetic natural
               biomaterials for tissue engineering and regenerative      http://doi.org/10.1002/adma.201906423
               medicine: New biosynthesis methods, recent advances, and   33.  Bittner S M, Guo J L, Melchiorri A, et al., 2018, Three-
               emerging applications. Mil Med Res, 10(1): 16.
                                                                  dimensional  printing  of  multilayered  tissue  engineering
               http://doi.org/10.1186/s40779-023-00448-w          scaffolds. Mater Today, 21(8): 861–874.
            22.  Yang J, Dang H, Xu Y, 2022, Recent advancement of      http://doi.org/10.1016/j.mattod.2018.02.006
               decellularization extracellular matrix for tissue engineering   34.  Huo Y, Xu Y, Wu X, et al., 2022, Functional trachea
               and biomedical application. Artif Organs, 46(4): 549–567.
                                                                  reconstruction  using  3D-bioprinted  native-like  tissue
               http://doi.org/10.1111/aor.14126                   architecture based on designable tissue-specific bioinks. Adv
                                                                  Sci, 9(29): 2202181.
            23.  Zhang  H,  Wang  Y,  Zheng  Z, et al.,  2023,  Strategies  for
               improving the 3D printability of decellularized extracellular      http://doi.org/https://doi.org/10.1002/advs.202202181
               matrix bioink. Theranostics, 13(8): 2562.
                                                               35.  Grigoryan B, Paulsen SJ, Corbett DC,  et  al., 2019,
               http://doi.org/10.1039/D2BM01273A                  Multivascular  networks  and functional  intravascular
                                                                  topologies within biocompatible hydrogels.  Science,
            24.  Kort-Mascort J, Flores-Torres S, Chavez OP, et  al., 2023,
               Decellularized ECM hydrogels: prior use considerations,   364(6439): 458–464.
               applications, and opportunities in tissue engineering and      http://doi.org/10.1126/science.aav9750
               biofabrication. Biomater Sci, 11(2): 400–431.
                                                               36.  Ng WL, Ayi TC, Liu Y-C, et al., 2021, Fabrication and
               http://doi.org/10.1039/d2bm01273a                  characterization of 3D bioprinted triple-layered human
                                                                  alveolar lung models. Int J Bioprint, 7(2): 332.
            25.  Bock S, Rades T, Rantanen J, et al., 2022, Additive
               manufacturing in respiratory sciences-current applications      http://doi.org/10.18063/ijb.v7i2.332
               and future prospects. Adv Drug Delivery Rev, 186: 114341.
                                                               37.  Lewis KJR, Tibbitt MW, Zhao Y, et al., 2015, In vitro model
               http://doi.org/10.1016/j.addr.2022.114341          alveoli from photodegradable microsphere templates.
                                                                  Biomater Sci, 3(6): 821–832.
            26.  Cui H, Nowicki M, Fisher JP, et al., 2017, 3D bioprinting for
               organ regeneration. Adv Healthc Mater, 6(1): 1601118.      http://doi.org/10.1039/c5bm00034c
               http://doi.org/10.1002/adhm.201601118           38.  Machino R, Matsumoto K, Taniguchi D, et al., 2019,
                                                                  Replacement of rat tracheas by layered, trachea-like,
            27.  Murphy SV, De Coppi P, Atala A, 2020, Opportunities and
               challenges of translational 3D bioprinting. Nat Biomed Eng,   scaffold-free structures of human cells using a Bio-3D
               4(4): 370–380.                                     printing system. Adv Healthc Mater, 8(7): e1800983.
                                                                  http://doi.org/10.1002/adhm.201800983
               http://doi.org/10.1038/s41551-019-0471-7
                                                               39.  Taniguchi D, Matsumoto K, Tsuchiya T, et al., 2018, Scaffold-
            28.  Yu C, Schimelman J, Wang P, et al., 2020, Photopolymerizable
               biomaterials and light-based 3D printing strategies for   free trachea regeneration by tissue engineering with bio-3D
               biomedical applications. Chem Rev, 120(19): 10695–10743.   printing. Interact Cardiovasc Thorac Surg, 26(5): 745–752.
                                                                  http://doi.org/10.1093/icvts/ivx444
               http://doi.org/10.1021/acs.chemrev.9b00810
                                                               40.  Kim IG, Park SA, Lee S-H, et al., 2020, Transplantation of
            29.  Jammalamadaka U, Tappa K, 2018, Recent advances  in   a 3D-printed tracheal graft combined with iPS cell-derived
               biomaterials for 3D printing and tissue engineering. J Funct   MSCs and chondrocytes. Sci Rep, 10(1): 4326.
               Biomater, 9(1): 22.
                                                                  http://doi.org/10.1038/s41598-020-61405-4
               http://doi.org/10.3390/jfb9010022


            Volume 9 Issue 6 (2023)                        446                          https://doi.org/10.36922/ijb.1166
   449   450   451   452   453   454   455   456   457   458   459