Page 457 - IJB-9-6
P. 457

International Journal of Bioprinting                                         3D bioprinting for lung tissue




            86.  Choi Y-M, Lee H, Ann M, et al., 2023, 3D bioprinted   93.  Yang Q, Gao B, Xu F, 2020, Recent advances in 4D
               vascularized lung cancer organoid models with underlying   bioprinting. Biotechnol J, 15(1): e1900086.
               disease capable of more precise drug evaluation.      http://doi.org/10.1002/biot.201900086
               Biofabrication, 15(3): 034104.
                                                               94.  Yang Y, Jia Y, Yang Q, et al., 2023, Engineering bio-inks
               http://doi.org/10.1088/1758-5090/acd95f
                                                                  for 3D bioprinting cell mechanical microenvironment.
            87.  Liberti DC, Morrisey EE, 2021, Organoid models: Assessing   Int J Bioprint, 9(1): 632.
               lung cell fate decisions and disease responses. Trends Mol      http://doi.org/10.18063/ijb.v9i1.632
               Med, 27(12): 1159–1174.
                                                               95.  Huang G, Wang L, Wang S, et al., 2012, Engineering three-
               http://doi.org/10.1016/j.molmed.2021.09.008
                                                                  dimensional cell mechanical microenvironment with
            88.  Valdoz JC, Franks NA, Cribbs CG, et al., 2022, Soluble ECM   hydrogels. Biofabrication, 4(4): 042001.
               promotes  organotypic  formation  in  lung  alveolar  model.      http://doi.org/10.1088/1758-5082/4/4/042001
               Biomaterials, 283: 121464.
                                                               96.  Huh D, Matthews BD, Mammoto A, et al., 2010,
               http://doi.org/10.1016/j.biomaterials.2022.121464
                                                                  Reconstituting organ-level lung functions on a chip. Science,
            89.  Kim S, Uroz M, Bays JL, et al., 2021, Harnessing   328(5986): 1662–1668.
               mechanobiology  for  tissue  engineering.  Dev Cell,  56(2):      http://doi.org/10.1126/science.1188302
               180–191.
                                                               97.  Doryab A, Tas S, Taskin MB, et al., 2019, Evolution of
               http://doi.org/10.1016/j.devcel.2020.12.017
                                                                  bioengineered lung models: recent advances and challenges
            90.  Tan Q, Choi KM, Sicard D, et al., 2017, Human airway   in tissue mimicry for studying the role of mechanical forces
               organoid engineering as a step toward lung regeneration and   in cell biology. Adv Funct Mater, 29(39): 1903114.
               disease modeling. Biomaterials, 113: 118–132.
                                                                  http://doi.org/10.1002/adfm.201903114
               http://doi.org/10.1016/j.biomaterials.2016.10.046
                                                               98.  Wang J, Zhang Y, Aghda NH, et al., 2021, Emerging 3D
            91.  Ji Y, Yang Q, Huang G, et al., 2019, Improved resolution and   printing technologies for drug delivery devices: Current
               fidelity of  droplet-based  bioprinting  by  upward  ejection.   status and future perspective. Adv Drug Delivery Rev, 174:
               ACS Biomater Sci Eng, 5(8): 4112–4121.             294–316.
               http://doi.org/10.1021/acsbiomaterials.9b00400     http://doi.org/10.1016/j.addr.2021.04.019
            92.  Li M, Yang Q, Liu H, et al., 2016, Capillary origami inspired
               fabrication of complex 3D hydrogel constructs.  Small,
               12(33): 4492–4500.
               http://doi.org/10.1002/smll.201601147

































            Volume 9 Issue 6 (2023)                        449                          https://doi.org/10.36922/ijb.1166
   452   453   454   455   456   457   458   459   460   461   462