Page 453 - IJB-9-6
P. 453
International Journal of Bioprinting 3D bioprinting for lung tissue
Conflict of interest 7. Daly AC, Prendergast ME, Hughes AJ, et al., 2021,
Bioprinting for the biologist. Cell, 184(1): 18–32.
The authors declare no conflicts of interests.
http://doi.org/10.1016/j.cell.2020.12.002
Author contributions 8. Moroni L, Burdick JA, Highley C, et al., 2018, Biofabrication
strategies for 3D in vitro models and regenerative medicine.
Conceptualization: Han Liu, Qingzhen Yang, Jiansheng Li Nat Rev Mater, 3(5): 21–37.
Writing – original draft: Pengbei Fan, Han Liu, Fanli Jin,
Yanqin Qin, Yuanyuan Wu http://doi.org/10.1038/s41578-018-0006-y
Writing – review & editing: Han Liu, Jiansheng Li, Qingzhen 9. Fang L, Liu Y, Qiu J, et al., 2022, Bioprinting and its use in
Yang tumor-on-a-chip technology for cancer drug screening: A
review. Int J Bioprint, 8(4): 603.
Ethics approval and consent to participate http://doi.org/10.18063/ijb.v8i4.603
Not applicable. 10. Foresti R, Rossi S, Pinelli S, et al., 2020, In-vivo vascular
application via ultra-fast bioprinting for future 5D
Consent for publication personalised nanomedicine. Sci Rep, 10(1): 3205.
Not applicable. http://doi.org/10.1038/s41598-020-60196-y
11. Foresti R, Rossi S, Pinelli S, et al., 2020, Highly-defined
Availability of data bioprinting of long-term vascularized scaffolds with Bio-
Trap: Complex geometry functionalization and process
Not applicable.
parameters with computer aided tissue engineering.
Materialia, 9: 100560.
References
http://doi.org/10.1016/j.mtla.2019.100560
1. Hwang KS, Seo EU, Choi N, et al., 2023, 3D engineered 12. Yang Q, Xiao Z, Lv X, et al., 2021, Fabrication and biomedical
tissue models for studying human-specific infectious viral applications of heart-on-a-chip. Int J Bioprint, 7(3): 370.
diseases. Bioact Mater, 21: 576–594.
http://doi.org/10.18063/ijb.v7i3.370
http://doi.org/10.1016/j.bioactmat.2022.09.010
13. Ma X, Liu J, Zhu W, et al., 2018, 3D bioprinting of functional
2. Margolis EA, Friend NE, Rolle MW, et al., 2023, tissue models for personalized drug screening and in vitro
Manufacturing the multiscale vascular hierarchy: Progress disease modeling. Adv Drug Delivery Rev, 132: 235–251.
toward solving the grand challenge of tissue engineering.
Trends Biotechnol, S0167-7799(23): 00124–5. http://doi.org/10.1016/j.addr.2018.06.011
http://doi.org/10.1016/j.tibtech.2023.04.003 14. Matai I, Kaur G, Seyedsalehi A, et al., 2020, Progress in
3D bioprinting technology for tissue/organ regenerative
3. Christenson SA, Smith BM, Bafadhel M, et al., 2022, engineering. Biomaterials, 226: 119536.
Chronic obstructive pulmonary disease. Lancet, 399(10342):
2227–2242. http://doi.org/10.1016/j.biomaterials.2019.119536
http://doi.org/10.1016/S0140-6736(22)00470-6 15. Liu Y, Yang Q, Zhang H, et al., 2021, Construction of cancer-
on-a-chip for drug screening. Drug Discov Today, 26(8):
4. Pugashetti JV, Adegunsoye A, Wu Z, et al., 2023, Validation 1875–1890.
of proposed criteria for progressive pulmonary fibrosis.
Am J Respir Crit Care Med, 207(1): 69–76. http://doi.org/10.1016/j.drudis.2021.03.006
http://doi.org/10.1164/rccm.202201-0124OC 16. Knowlton S, Joshi A, Yenilmez B, et al., 2016, Advancing
cancer research using bioprinting for tumor-on-a-chip
5. Bailey KE, Floren ML, D’Ovidio TJ, et al., 2019, Tissue- platforms. Int J Bioprint, 2(2): 3–8.
informed engineering strategies for modeling human
pulmonary diseases. Am J Physiol Lung Cell Mol Physiol, http://doi.org/10.18063/ijb.2016.02.003
316(2): L303–L320. 17. Liu F, Liu C, Chen Q, et al., 2018, Progress in organ 3D
http://doi.org/10.1152/ajplung.00353.2018 bioprinting. Int J Bioprint, 4(1): 128.
6. Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D Bioprinting: http://doi.org/10.18063/IJB.v4i1.128
From benches to translational applications. Small, 15(23): 18. Pan T, Song W, Cao X, et al., 2016, 3D bioplotting of gelatin/
e1805510. alginate scaffolds for tissue engineering: Influence of
http://doi.org/10.1002/smll.201805510 crosslinking degree and pore architecture on physicochemical
properties. J Mater Sci Technol, 32(9): 889–900.
Volume 9 Issue 6 (2023) 445 https://doi.org/10.36922/ijb.1166

