Page 453 - IJB-9-6
P. 453

International Journal of Bioprinting                                         3D bioprinting for lung tissue




            Conflict of interest                               7.   Daly AC, Prendergast ME, Hughes AJ, et al., 2021,
                                                                  Bioprinting for the biologist. Cell, 184(1): 18–32.
            The authors declare no conflicts of interests.
                                                                  http://doi.org/10.1016/j.cell.2020.12.002
            Author contributions                               8.   Moroni L, Burdick JA, Highley C, et al., 2018, Biofabrication
                                                                  strategies for 3D in vitro models and regenerative medicine.
            Conceptualization: Han Liu, Qingzhen Yang, Jiansheng Li  Nat Rev Mater, 3(5): 21–37.
            Writing – original draft: Pengbei Fan, Han Liu, Fanli Jin,
               Yanqin Qin, Yuanyuan Wu                            http://doi.org/10.1038/s41578-018-0006-y
            Writing – review & editing: Han Liu, Jiansheng Li, Qingzhen   9.   Fang L, Liu Y, Qiu J, et al., 2022, Bioprinting and its use in
               Yang                                               tumor-on-a-chip technology for cancer drug screening: A
                                                                  review. Int J Bioprint, 8(4): 603.
            Ethics approval and consent to participate            http://doi.org/10.18063/ijb.v8i4.603
            Not applicable.                                    10.  Foresti  R,  Rossi  S,  Pinelli  S, et al.,  2020, In-vivo vascular
                                                                  application via ultra-fast bioprinting for future 5D
            Consent for publication                               personalised nanomedicine. Sci Rep, 10(1): 3205.
            Not applicable.                                       http://doi.org/10.1038/s41598-020-60196-y
                                                               11.  Foresti R, Rossi S, Pinelli S, et al., 2020, Highly-defined
            Availability of data                                  bioprinting of  long-term  vascularized  scaffolds  with  Bio-
                                                                  Trap: Complex geometry functionalization and process
            Not applicable.
                                                                  parameters with computer aided tissue engineering.
                                                                  Materialia, 9: 100560.
            References
                                                                  http://doi.org/10.1016/j.mtla.2019.100560
            1.   Hwang KS, Seo EU, Choi N, et  al., 2023, 3D engineered   12.  Yang Q, Xiao Z, Lv X, et al., 2021, Fabrication and biomedical
               tissue models for studying human-specific infectious viral   applications of heart-on-a-chip. Int J Bioprint, 7(3): 370.
               diseases. Bioact Mater, 21: 576–594.
                                                                  http://doi.org/10.18063/ijb.v7i3.370
               http://doi.org/10.1016/j.bioactmat.2022.09.010
                                                               13.  Ma X, Liu J, Zhu W, et al., 2018, 3D bioprinting of functional
            2.   Margolis EA, Friend NE, Rolle MW, et al., 2023,   tissue models for personalized drug screening and in vitro
               Manufacturing the multiscale vascular hierarchy: Progress   disease modeling. Adv Drug Delivery Rev, 132: 235–251.
               toward solving the grand challenge of tissue engineering.
               Trends Biotechnol, S0167-7799(23): 00124–5.        http://doi.org/10.1016/j.addr.2018.06.011
               http://doi.org/10.1016/j.tibtech.2023.04.003    14.  Matai I, Kaur G, Seyedsalehi A, et al., 2020, Progress in
                                                                  3D bioprinting technology for tissue/organ regenerative
            3.   Christenson  SA,  Smith  BM,  Bafadhel  M, et al.,  2022,   engineering. Biomaterials, 226: 119536.
               Chronic obstructive pulmonary disease. Lancet, 399(10342):
               2227–2242.                                         http://doi.org/10.1016/j.biomaterials.2019.119536
               http://doi.org/10.1016/S0140-6736(22)00470-6    15.  Liu Y, Yang Q, Zhang H, et al., 2021, Construction of cancer-
                                                                  on-a-chip for drug screening.  Drug Discov Today, 26(8):
            4.   Pugashetti JV, Adegunsoye A, Wu Z, et al., 2023, Validation   1875–1890.
               of  proposed  criteria  for  progressive  pulmonary fibrosis.
               Am J Respir Crit Care Med, 207(1): 69–76.          http://doi.org/10.1016/j.drudis.2021.03.006
               http://doi.org/10.1164/rccm.202201-0124OC       16.  Knowlton S, Joshi A, Yenilmez B, et al., 2016, Advancing
                                                                  cancer research using bioprinting for tumor-on-a-chip
            5.   Bailey  KE,  Floren  ML,  D’Ovidio  TJ,  et al.,  2019,  Tissue-  platforms. Int J Bioprint, 2(2): 3–8.
               informed engineering strategies for modeling human
               pulmonary  diseases.  Am J Physiol Lung Cell Mol Physiol,      http://doi.org/10.18063/ijb.2016.02.003
               316(2): L303–L320.                              17.  Liu F, Liu C, Chen Q, et al., 2018, Progress in organ 3D
               http://doi.org/10.1152/ajplung.00353.2018          bioprinting. Int J Bioprint, 4(1): 128.
            6.   Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D Bioprinting:      http://doi.org/10.18063/IJB.v4i1.128
               From benches to translational applications.  Small, 15(23):   18.  Pan T, Song W, Cao X, et al., 2016, 3D bioplotting of gelatin/
               e1805510.                                          alginate scaffolds for tissue engineering: Influence of
               http://doi.org/10.1002/smll.201805510              crosslinking degree and pore architecture on physicochemical
                                                                  properties. J Mater Sci Technol, 32(9): 889–900.


            Volume 9 Issue 6 (2023)                        445                          https://doi.org/10.36922/ijb.1166
   448   449   450   451   452   453   454   455   456   457   458