Page 455 - IJB-9-6
P. 455
International Journal of Bioprinting 3D bioprinting for lung tissue
41. Berg J, Weber Z, Fechler-Bitteti M, et al., 2021, Bioprinted 52. Huang G, Li F, Zhao X, et al., 2017, Functional and biomimetic
multi-cell type lung model for the study of viral inhibitors. materials for engineering of the three-dimensional cell
Viruses, 13(8): 1590. microenvironment. Chem Rev, 117(20): 12764–12850.
http://doi.org/10.3390/v13081590 http://doi.org/10.1021/acs.chemrev.7b00094
42. Wanczyk H, Jensen T, Weiss DJ, et al., 2021, Advanced single- 53. Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink properties
cell technologies to guide the development of bioengineered before, during and after 3D bioprinting. Biofabrication, 8(3):
lungs. Am J Physiol Lung Cell Mol Physiol, 320(6): L1101– 032002.
L1117. http://doi.org/10.1088/1758-5090/8/3/032002
http://doi.org/10.1152/ajplung.00089.2021 54. Qing H, Ji Y, Li W, et al., 2020, Microfluidic printing of
43. Liu H, Wu M, Jia YB, et al., 2020, Control of fibroblast three-dimensional graphene electroactive microfibrous
shape in sequentially formed 3D hybrid hydrogels regulates scaffolds. ACS Appl Mater Interfaces, 12(2): 2049–2058.
cellular responses to microenvironmental cues. NPG Asia http://doi.org/10.1021/acsami.9b17948
Mater, 12(1): 45.
55. de Hilster RHJ, Sharma PK, Jonker MR, et al., 2020, Human
http://doi.org/10.1038/s41427-020-0226-7 lung extracellular matrix hydrogels resemble the stiffness
44. Xu F, Wu J, Wang S, et al., 2011, Microengineering methods and viscoelasticity of native lung tissue. Am J Physiol Lung
for cell-based microarrays and high-throughput drug- Cell Mol Physiol, 318(4): L698–L704.
screening applications. Biofabrication, 3(3): 034101. http://doi.org/10.1152/ajplung.00451.2019
http://doi.org/10.1088/1758-5082/3/3/034101 56. Zepp JA, Morrisey EE, 2019, Cellular crosstalk in the
45. Wang L, Qiu M, Yang Q, et al., 2015, Fabrication of development and regeneration of the respiratory system.
microscale hydrogels with tailored microstructures based Nat Rev Mol Cell Biol, 20(9): 551–566.
on liquid bridge phenomenon. ACS Appl Mater Interfaces, http://doi.org/10.1038/s41580-019-0141-3
7(21): 11134–11140.
57. Knudsen L, Ochs M, 2018, The micromechanics of lung
http://doi.org/10.1021/acsami.5b00081 alveoli: Structure and function of surfactant and tissue
46. Dong Y, Jin G, Hong Y, et al., 2018, Engineering the cell components. Histochem Cell Biol, 150(6): 661–676.
microenvironment using novel photoresponsive hydrogels. http://doi.org/10.1007/s00418-018-1747-9
ACS Appl Mater Interfaces, 10(15): 12374–12389.
58. Bertassoni LE, Cecconi M, Manoharan V, et al., 2014,
http://doi.org/10.1021/acsami.7b17751 Hydrogel bioprinted microchannel networks for
47. Liu H, Li M, Huang G, et al., 2021, Bioinspired microstructure vascularization of tissue engineering constructs. Lab Chip,
platform for modular cell-laden microgel fabrication. 14(13): 2202–2211.
Macromol Biosci, 21(9): e2100110. http://doi.org/10.1039/c4lc00030g
http://doi.org/10.1002/mabi.202100110 59. Kang D, Park JA, Kim W, et al., 2021, All-inkjet-printed
48. Ma Y, Ji Y, Huang G, et al., 2015, Bioprinting 3D cell-laden 3D alveolar barrier model with physiologically relevant
hydrogel microarray for screening human periodontal microarchitecture. Adv Sci (Weinh), 8(10): 2004990.
ligament stem cell response to extracellular matrix. http://doi.org/10.1002/advs.202004990
Biofabrication, 7(4): 044105.
60. Horváth L, Umehara Y, Jud C, et al., 2015, Engineering an in
http://doi.org/10.1088/1758-5090/7/4/044105 vitro air-blood barrier by 3D bioprinting. Sci Rep, 5: 7974.
49. Ravanbakhsh H, Karamzadeh V, Bao G, et al., 2021, http://doi.org/10.1038/srep07974
Emerging technologies in multi-material bioprinting. Adv
Mater, 33(49): e2104730. 61. Gu Z, Fu J, Lin H, et al., 2020, Development of 3D bioprinting:
From printing methods to biomedical applications. Asian J
http://doi.org/10.1002/adma.202104730 Pharm Sci, 15(5): 529–557.
50. Han YL, Wang W, Hu J, et al., 2013, Benchtop fabrication of http://doi.org/10.1016/j.ajps.2019.11.003
three-dimensional reconfigurable microfluidic devices from
paper-polymer composite. Lab Chip, 13(24): 4745–4749. 62. De Santis MM, Alsafadi HN, Tas S, et al., 2021, Extracellular-
matrix-reinforced bioinks for 3D bioprinting human tissue.
http://doi.org/10.1039/c3lc50919b Adv Mat, 33(3): e2005476.
51. Ferreira LP, Gaspar VM, Mano JF, 2020, Decellularized http://doi.org/10.1002/adma.202005476
extracellular matrix for bioengineering physiomimetic 3D in 63. Berg J, Hiller T, Kissner MS, et al., 2018, Optimization of
vitro tumor models. Trends Biotechnol, 38(12): 1397–1414.
cell-laden bioinks for 3D bioprinting and efficient infection
http://doi.org/10.1016/j.tibtech.2020.04.006 with influenza A virus. Sci Rep, 8(1): 13877.
Volume 9 Issue 6 (2023) 447 https://doi.org/10.36922/ijb.1166

