Page 455 - IJB-9-6
P. 455

International Journal of Bioprinting                                         3D bioprinting for lung tissue




            41.  Berg J, Weber Z, Fechler-Bitteti M, et al., 2021, Bioprinted   52.  Huang G, Li F, Zhao X, et al., 2017, Functional and biomimetic
               multi-cell type lung model for the study of viral inhibitors.   materials for engineering of the three-dimensional cell
               Viruses, 13(8): 1590.                              microenvironment. Chem Rev, 117(20): 12764–12850.
               http://doi.org/10.3390/v13081590                   http://doi.org/10.1021/acs.chemrev.7b00094
            42.  Wanczyk H, Jensen T, Weiss DJ, et al., 2021, Advanced single-  53.  Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink properties
               cell technologies to guide the development of bioengineered   before, during and after 3D bioprinting. Biofabrication, 8(3):
               lungs. Am J Physiol Lung Cell Mol Physiol, 320(6): L1101–  032002.
               L1117.                                             http://doi.org/10.1088/1758-5090/8/3/032002
               http://doi.org/10.1152/ajplung.00089.2021       54.  Qing H, Ji Y, Li W, et al., 2020, Microfluidic printing of
            43.  Liu H, Wu M, Jia YB, et al., 2020, Control of fibroblast   three-dimensional graphene electroactive microfibrous
               shape in sequentially formed 3D hybrid hydrogels regulates   scaffolds. ACS Appl Mater Interfaces, 12(2): 2049–2058.
               cellular responses to microenvironmental cues.  NPG  Asia      http://doi.org/10.1021/acsami.9b17948
               Mater, 12(1): 45.
                                                               55.  de Hilster RHJ, Sharma PK, Jonker MR, et al., 2020, Human
               http://doi.org/10.1038/s41427-020-0226-7           lung extracellular matrix hydrogels resemble the stiffness
            44.  Xu F, Wu J, Wang S, et al., 2011, Microengineering methods   and viscoelasticity of native lung tissue. Am J Physiol Lung
               for cell-based microarrays and high-throughput drug-  Cell Mol Physiol, 318(4): L698–L704.
               screening applications. Biofabrication, 3(3): 034101.      http://doi.org/10.1152/ajplung.00451.2019
               http://doi.org/10.1088/1758-5082/3/3/034101     56.  Zepp JA, Morrisey EE, 2019, Cellular crosstalk in the
            45.  Wang L, Qiu M, Yang Q,  et  al., 2015, Fabrication of   development and regeneration of the respiratory system.
               microscale  hydrogels  with  tailored  microstructures  based   Nat Rev Mol Cell Biol, 20(9): 551–566.
               on liquid bridge phenomenon. ACS Appl Mater Interfaces,      http://doi.org/10.1038/s41580-019-0141-3
               7(21): 11134–11140.
                                                               57.  Knudsen L, Ochs M, 2018, The micromechanics of lung
               http://doi.org/10.1021/acsami.5b00081              alveoli: Structure and function of surfactant and tissue
            46.  Dong Y, Jin G, Hong Y, et al., 2018, Engineering the cell   components. Histochem Cell Biol, 150(6): 661–676.
               microenvironment using novel photoresponsive hydrogels.      http://doi.org/10.1007/s00418-018-1747-9
               ACS Appl Mater Interfaces, 10(15): 12374–12389.
                                                               58.  Bertassoni LE, Cecconi M, Manoharan V,  et  al., 2014,
               http://doi.org/10.1021/acsami.7b17751              Hydrogel  bioprinted  microchannel  networks  for
            47.  Liu H, Li M, Huang G, et al., 2021, Bioinspired microstructure   vascularization of tissue engineering constructs. Lab Chip,
               platform for modular cell-laden microgel fabrication.   14(13): 2202–2211.
               Macromol Biosci, 21(9): e2100110.                  http://doi.org/10.1039/c4lc00030g
               http://doi.org/10.1002/mabi.202100110           59.  Kang D, Park JA, Kim W, et al., 2021, All-inkjet-printed
            48.  Ma Y, Ji Y, Huang G, et al., 2015, Bioprinting 3D cell-laden   3D alveolar barrier model with physiologically relevant
               hydrogel microarray for screening human periodontal   microarchitecture. Adv Sci (Weinh), 8(10): 2004990.
               ligament stem cell response to extracellular matrix.      http://doi.org/10.1002/advs.202004990
               Biofabrication, 7(4): 044105.
                                                               60.  Horváth L, Umehara Y, Jud C, et al., 2015, Engineering an in
               http://doi.org/10.1088/1758-5090/7/4/044105        vitro air-blood barrier by 3D bioprinting. Sci Rep, 5: 7974.
            49.  Ravanbakhsh H, Karamzadeh V, Bao G, et al., 2021,      http://doi.org/10.1038/srep07974
               Emerging technologies in multi-material bioprinting.  Adv
               Mater, 33(49): e2104730.                        61.  Gu Z, Fu J, Lin H, et al., 2020, Development of 3D bioprinting:
                                                                  From printing methods to biomedical applications. Asian J
               http://doi.org/10.1002/adma.202104730              Pharm Sci, 15(5): 529–557.
            50.  Han YL, Wang W, Hu J, et al., 2013, Benchtop fabrication of      http://doi.org/10.1016/j.ajps.2019.11.003
               three-dimensional reconfigurable microfluidic devices from
               paper-polymer composite. Lab Chip, 13(24): 4745–4749.   62.  De Santis MM, Alsafadi HN, Tas S, et al., 2021, Extracellular-
                                                                  matrix-reinforced bioinks for 3D bioprinting human tissue.
               http://doi.org/10.1039/c3lc50919b                  Adv Mat, 33(3): e2005476.
            51.  Ferreira LP, Gaspar VM, Mano JF, 2020, Decellularized      http://doi.org/10.1002/adma.202005476
               extracellular matrix for bioengineering physiomimetic 3D in   63.  Berg J, Hiller T, Kissner MS, et al., 2018, Optimization of
               vitro tumor models. Trends Biotechnol, 38(12): 1397–1414.
                                                                  cell-laden bioinks for 3D bioprinting and efficient infection
               http://doi.org/10.1016/j.tibtech.2020.04.006       with influenza A virus. Sci Rep, 8(1): 13877.

            Volume 9 Issue 6 (2023)                        447                          https://doi.org/10.36922/ijb.1166
   450   451   452   453   454   455   456   457   458   459   460