Page 472 - IJB-9-6
P. 472
International Journal of Bioprinting 3D bioprinting of in vitro cartilage tissue model
8. Sanjurjo-Rodríguez C, Castro-Viñuelas R, Hermida-Gómez T, articular cartilage-derived progenitor cells. Acta Biomater,
et al., 2017, Human cartilage engineering in an in vitro 61 (October 1): 41–53.
repair model using collagen scaffolds and mesenchymal 21. Mouser VHM, Melchels FPW, Visser J, et al., 2016, Yield
stromal cells. Int J Med Sci, 14(12): 1257–1262.
stress determines bioprintability of hydrogels based
https://pubmed.ncbi.nlm.nih.gov/29104482 on gelatin-methacryloyl and gellan gum for cartilage
bioprinting. Biofabrication, 8(3): 35003.
9. Wu Y, Kennedy P, Bonazza N, et al., 2021, Three-dimensional
bioprinting of articular cartilage: A systematic review. 22. O’Connell CD, Di Bella C, Thompson F, et al., 2016,
Cartilage, 12(1): 76–92. Development of the Biopen: A handheld device for surgical
printing of adipose stem cells at a chondral wound site.
10. Ng WL, Chua CK, Shen YF, 2019, Print me an organ! Why
we are not there yet. Prog Polym Sci, 97(October 1): 101145. Biofabrication, 8(1): 15019.
23. Zhu W, Cui H, Boualam B, et al., 2018, 3D bioprinting
https://doi.org/10.1016/j.progpolymsci.2019.101145
mesenchymal stem cell-laden construct with core-
11. Ozbolat IT, Hospodiuk M, 2016, Current advances and shell nanospheres for cartilage tissue engineering.
future perspectives in extrusion-based bioprinting. Nanotechnology, 29(18): 185101.
Biomaterials, 76 (January 1): 321–343.
24. Abbadessa A, Mouser VHM, Blokzijl MM, et al., 2016, A
http://dx.doi.org/10.1016/j.biomaterials.2015.10.076 synthetic thermosensitive hydrogel for cartilage bioprinting
12. Suntornnond R, Ng WL, Huang X, et al., 2022, Improving and its biofunctionalization with polysaccharides.
printability of hydrogel-based bio-inks for thermal inkjet Biomacromolecules, 17(6): 2137–2147.
bioprinting applications via saponification and heat https://pubs.acs.org/doi/10.1021/acs.biomac.6b00366
treatment processes. J Mater Chem B, 10(31): 5989–6000.
25. Wasyłeczko M, Sikorska W, Chwojnowski A, 2020,
13. Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization- Review of synthetic and hybrid scaffolds in cartilage tissue
based bioprinting - process, materials, applications and engineering. Membranes, 10(11): 348.
regulatory challenges. Biofabrication, 12(2): 022001.
https://pubmed.ncbi.nlm.nih.gov/33212901
14. Sekar MP, Budharaju H, Zennifer A, et al., 2021, Current
standards and ethical landscape of engineered tissues- 26. Popov A, Malferrari S, Kalaskar DM, 2017, 3D bioprinting
3D bioprinting perspective. J Tissue Eng, 12 (July 1): for musculoskeletal applications. J 3D Print Med, 1(3):
20417314211027676. 191–211.
15. Costantini M, Idaszek J, Szöke K, et al., 2016, 3D bioprinting https://www.futuremedicine.com/doi/10.2217/3dp-2017-0004
of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro 27. OECD, 2018, Guidance Document on Good In Vitro Method
neocartilage formation. Biofabrication, 8(3): 035002. Practices (GIVIMP), Vol. 1, OECD Publishing, Paris, 1–264.
https://iopscience.iop.org/article/10.1088/1758-5090/8/3/035002 https://www.oecd-ilibrary.org/docserver/9789264304796-
en.pdf?expires=1621462493&id=id&accname=guest&checksum=
16. Daly AC, Critchley SE, Rencsok EM, et al., 2016, A
comparison of different bioinks for 3D bioprinting of 4EA871101E844045CE8D833D9DFADC25%0A
fibrocartilage and hyaline cartilage. Biofabrication, 8(4): https://www.oecd-ilibrary.org/environment/guidance-
045002. document-on-good-in-vitro-method-practices-
givimp_9789264304
https://iopscience.iop.org/article/10.1088/1758-5090/8/4/045002
28. Ligorio C, Hoyland JA, Saiani A, 2022, Self-assembling
17. Duchi S, Onofrillo C, O’Connell CD, et al., 2017, Handheld
co-axial bioprinting: Application to in situ surgical cartilage peptide hydrogels as functional tools to tackle intervertebral
repair. Sci Rep, 7(1): 5837. disc degeneration. Gels, 8(4).
18. Gao G, Schilling AF, Hubbell K, et al., 2015, Improved https://www.mdpi.com/2310-2861/8/4/211
properties of bone and cartilage tissue from 3D inkjet- 29. Mujeeb A, Miller AF, Saiani A, Gough JE. 2013; Self-
bioprinted human mesenchymal stem cells by simultaneous assembled octapeptide scaffolds for in vitro chondrocyte
deposition and photocrosslinking in PEG-GelMA. culture. 9(1):4609–17. 2013. Acta Biomater [Internet].
Biotechnol Lett, 37(11): 2349–2355. Available from:
19. Levato R, Visser J, Planell JA, et al., 2014, Biofabrication http://dx.doi.org/10.1016/j.actbio.2012.08.044
of tissue constructs by 3D bioprinting of cell-laden
microcarriers. Biofabrication, 6(3): 035020. 30. Wan S, Borland S, Richardson SM, et al., 2016, Self-
assembling peptide hydrogel for intervertebral disc tissue
https://iopscience.iop.org/article/10.1088/1758-5082/6/3/035020 engineering. Acta Biomater, 46(December 1): 29–40.
20. Levato R, Webb WR, Otto IA, et al., 2017, The bio in the https://www.sciencedirect.com/science/article/pii/
ink: Cartilage regeneration with bioprintable hydrogels and S1742706116305062
Volume 9 Issue 6 (2023) 464 https://doi.org/10.36922/ijb.0899

