Page 472 - IJB-9-6
P. 472

International Journal of Bioprinting                             3D bioprinting of in vitro cartilage tissue model




            8.   Sanjurjo-Rodríguez C, Castro-Viñuelas R, Hermida-Gómez T,    articular cartilage-derived progenitor cells. Acta Biomater,
               et al., 2017, Human cartilage engineering in an in vitro   61 (October 1): 41–53.
               repair model using collagen scaffolds and mesenchymal   21.  Mouser VHM, Melchels FPW, Visser J,  et al., 2016, Yield
               stromal cells. Int J Med Sci, 14(12): 1257–1262.
                                                                  stress determines bioprintability of hydrogels based
               https://pubmed.ncbi.nlm.nih.gov/29104482           on gelatin-methacryloyl and gellan gum for cartilage
                                                                  bioprinting. Biofabrication, 8(3): 35003.
            9.   Wu Y, Kennedy P, Bonazza N, et al., 2021, Three-dimensional
               bioprinting of articular cartilage: A systematic review.   22.  O’Connell CD, Di Bella C, Thompson F,  et al., 2016,
               Cartilage, 12(1): 76–92.                           Development of the Biopen: A handheld device for surgical
                                                                  printing of adipose stem cells at a chondral wound site.
            10.  Ng WL, Chua CK, Shen YF, 2019, Print me an organ! Why
               we are not there yet. Prog Polym Sci, 97(October 1): 101145.  Biofabrication, 8(1): 15019.
                                                               23.  Zhu W, Cui H, Boualam B,  et al., 2018, 3D bioprinting
               https://doi.org/10.1016/j.progpolymsci.2019.101145
                                                                  mesenchymal stem cell-laden construct with core-
            11.  Ozbolat IT, Hospodiuk M, 2016, Current advances and   shell nanospheres for cartilage tissue engineering.
               future  perspectives  in extrusion-based bioprinting.   Nanotechnology, 29(18): 185101.
               Biomaterials, 76 (January 1): 321–343.
                                                               24.  Abbadessa A, Mouser VHM, Blokzijl MM, et al., 2016, A
               http://dx.doi.org/10.1016/j.biomaterials.2015.10.076  synthetic thermosensitive hydrogel for cartilage bioprinting
            12.  Suntornnond R, Ng WL, Huang X, et al., 2022, Improving   and  its  biofunctionalization  with  polysaccharides.
               printability of hydrogel-based bio-inks for thermal inkjet   Biomacromolecules, 17(6): 2137–2147.
               bioprinting applications via saponification and heat   https://pubs.acs.org/doi/10.1021/acs.biomac.6b00366
               treatment processes. J Mater Chem B, 10(31): 5989–6000.
                                                               25.  Wasyłeczko M, Sikorska W, Chwojnowski A, 2020,
            13.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-  Review of synthetic and hybrid scaffolds in cartilage tissue
               based bioprinting - process, materials, applications and   engineering. Membranes, 10(11): 348.
               regulatory challenges. Biofabrication, 12(2): 022001.
                                                                  https://pubmed.ncbi.nlm.nih.gov/33212901
            14.  Sekar MP, Budharaju H, Zennifer A, et al., 2021, Current
               standards and ethical landscape of engineered tissues-  26.  Popov A, Malferrari S, Kalaskar DM, 2017, 3D bioprinting
               3D bioprinting perspective.  J Tissue Eng, 12 (July 1):   for musculoskeletal applications.  J  3D  Print  Med, 1(3):
               20417314211027676.                                 191–211.
            15.  Costantini M, Idaszek J, Szöke K, et al., 2016, 3D bioprinting   https://www.futuremedicine.com/doi/10.2217/3dp-2017-0004
               of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro   27.  OECD, 2018, Guidance Document on Good In Vitro Method
               neocartilage formation. Biofabrication, 8(3): 035002.  Practices (GIVIMP), Vol. 1, OECD Publishing, Paris, 1–264.
               https://iopscience.iop.org/article/10.1088/1758-5090/8/3/035002  https://www.oecd-ilibrary.org/docserver/9789264304796-
                                                                  en.pdf?expires=1621462493&id=id&accname=guest&checksum=
            16.  Daly AC, Critchley SE, Rencsok EM,  et al., 2016, A
               comparison of different bioinks for 3D bioprinting of   4EA871101E844045CE8D833D9DFADC25%0A
               fibrocartilage and hyaline cartilage.  Biofabrication, 8(4):   https://www.oecd-ilibrary.org/environment/guidance-
               045002.                                            document-on-good-in-vitro-method-practices-
                                                                  givimp_9789264304
               https://iopscience.iop.org/article/10.1088/1758-5090/8/4/045002
                                                               28.  Ligorio C, Hoyland JA, Saiani A, 2022, Self-assembling
            17.  Duchi S, Onofrillo C, O’Connell CD, et al., 2017, Handheld
               co-axial bioprinting: Application to in situ surgical cartilage   peptide hydrogels as functional tools to tackle intervertebral
               repair. Sci Rep, 7(1): 5837.                       disc degeneration. Gels, 8(4).
            18.  Gao G, Schilling AF, Hubbell K,  et  al., 2015, Improved   https://www.mdpi.com/2310-2861/8/4/211
               properties of bone and cartilage tissue from 3D inkjet-  29.  Mujeeb A, Miller AF, Saiani A, Gough JE. 2013; Self-
               bioprinted human mesenchymal stem cells by simultaneous   assembled octapeptide  scaffolds  for  in  vitro  chondrocyte
               deposition and photocrosslinking in PEG-GelMA.     culture. 9(1):4609–17. 2013. Acta Biomater [Internet].
               Biotechnol Lett, 37(11): 2349–2355.                Available from:
            19.  Levato R, Visser J, Planell JA,  et al., 2014, Biofabrication   http://dx.doi.org/10.1016/j.actbio.2012.08.044
               of tissue constructs by 3D bioprinting of cell-laden
               microcarriers. Biofabrication, 6(3): 035020.    30.  Wan S, Borland S, Richardson SM,  et  al., 2016, Self-
                                                                  assembling peptide hydrogel for intervertebral disc tissue
               https://iopscience.iop.org/article/10.1088/1758-5082/6/3/035020  engineering. Acta Biomater, 46(December 1): 29–40.
            20.  Levato R, Webb WR, Otto IA, et al., 2017, The bio in the   https://www.sciencedirect.com/science/article/pii/
               ink: Cartilage regeneration with bioprintable hydrogels and   S1742706116305062



            Volume 9 Issue 6 (2023)                        464                        https://doi.org/10.36922/ijb.0899
   467   468   469   470   471   472   473   474   475   476   477