Page 500 - IJB-9-6
P. 500
International Journal of Bioprinting Bioprinting cell-laden protein-based hydrogel
31. Abascal NC, Regan L, 2018, The past, present and future of http://doi:10.1039/D1TB01345A
protein-based materials. Open Biol, 8(10): 180113.
42. Chakraborty J, Ghosh S, 2020, Cellular proliferation, self-
http://doi:10.1098/rsob.180113 assembly, and modulation of signaling pathways in silk
32. Jeshvaghani PA, Pourmadadi M, Yazdian F, et al., 2023, fibroin gelatin-based 3D bioprinted constructs. ACS Appl
Synthesis and characterization of a novel, pH-responsive Bio Mater, 3(12): 8309–8320.
sustained release nanocarrier using polyethylene glycol, http://doi:10.1021/acsabm.0c01252
graphene oxide, and natural silk fibroin protein by a green 43. Bakhtiary N, Ghalandari B, Ghorbani F, et al., 2023,
nano emulsification method to enhance cancer treatment. Advances in peptide-based hydrogel for tissue engineering.
Int J Biol Macromol, 226: 1100–1115.
Polymers (Basel), 15(5): 1068.
http://doi:10.1016/j.ijbiomac.2022.11.226
http://doi:10.3390/polym15051068
33. Hajiabbas M, Okoro OV, Delporte C, et al., 2023, Proteins 44. Huettner N, Dargaville TR, Forget A, 2018, Discovering
and polypeptides as biomaterials inks for 3D printing, in cell-adhesion peptides in tissue engineering: Beyond RGD.
Handbook of the Extracellular Matrix, Springer International Trends Biotechnol, 36(4): 372–383.
Publishing, Cham, 2023, 1–34.
http://doi:10.1016/j.tibtech.2018.01.008
http://doi:10.1007/978-3-030-92090-6_15-1
45. Gao G, Cui X, Bone BÁ, et al., 2016, Three-dimensional
34. Gagner JE, Kim W, Chaikof EL, 2014, Designing protein- bioprinting in tissue engineering and regenerative medicine.
based biomaterials for medical applications. Acta Biomater, Biotechnol Lett, 38: 422–434.
10(4): 1542–1557.
http://doi:10.1007/s10529-015-1975-1
http://doi:10.1016/j.actbio.2013.10.001
46. Tasoglu S, Demirci U, 2013, Bioprinting for stem cell
35. Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting research. Trends Biotechnol, 31(1): 10–19.
of collagen to rebuild components of the human heart.
Science, 365(6452): 482–487. http://doi:10.1016/j.tibtech.2012.10.005
http://doi:10.1126/science.aav9051 47. Riba J, Renz N, Niemöller C, et al., 2016, Molecular genetic
characterization of individual cancer cells isolated via single-
36. Łabowska MB, Cierluk K, Jankowska AM, et al., 2021, A cell printing. PLoS One, 11(9): e0163455.
review on the adaption of alginate-gelatin hydrogels for 3D
cultures and bioprinting. Materials (Basel), 14(4): 858. http://doi:10.1371/journal.pone.0163455
http://doi:10.3390/ma14040858 48. Stumpf F, Schoendube J, Gross A, et al., 2015, Single-cell
PCR of genomic DNA enabled by automated single-cell
37. Liu S, Yu J-M, Gan Y-C, et al., 2023, Biomimetic natural printing for cell isolation. Biosens Bioelectron, 69: 301–306.
biomaterials for tissue engineering and regenerative
medicine: New biosynthesis methods, recent advances, and http://doi:10.1016/j.bios.2015.03.008
emerging applications. Mil Med Res, 10(1): 16. 49. Zhang X, Wei X, Wei Y, et al., 2020, The up-to-date strategies
http://doi:10.1186/s40779-023-00448-w for the isolation and manipulation of single cells. Talanta,
218: 121147.
38. Cheung H-Y, Lau K-T, Lu T-P, et al., 2007, A critical review
on polymer-based bio-engineered materials for scaffold http://doi:10.1016/j.talanta.2020.121147
development. Compos Part B Eng, 38(3): 291–300. 50. Herzenberg LA, Parks D, Sahaf B, et al., 2002, The history
http://doi:10.1016/j.compositesb.2006.06.014 and future of the fluorescence activated cell sorter and
flow cytometry: A view from stanford. Clin Chem, 48(10):
39. Al Enezy‐Ulbrich MA, Malyaran H, Lange RD, et al., 2020, 1819–1827.
Impact of reactive amphiphilic copolymers on mechanical
properties and cell responses of fibrin‐based hydrogels. Adv http://doi:10.1093/clinchem/48.10.1819
Funct Mater, 30(38): 2003528. 51. Zhou Y, Shaw D, Lam C, et al., 2018, Beating the odds: The
http://doi:10.1002/adfm.202003528 poisson distribution of all input cells during limiting dilution
grossly underestimates whether a cell line is clonally-derived
40. Vernerey FJ, Greenwald EC, Bryant SJ, 2012, Triphasic mixture or not. Biotechnol Prog, 34(3): 559–569.
model of cell-mediated enzymatic degradation of hydrogels.
Comput Methods Biomech Biomed Engin, 15(11): 1197–1210. http://doi:10.1002/btpr.2560
http://doi:10.1080/10255842.2011.585973 52. Gross A, Schoendube J, Zimmermann S, et al., 2015,
Technologies for single-cell isolation. Int J Mol Sci, 16(8):
41. Khan F, Atif M, Haseen M, et al., 2022, Synthesis, classification 16897–16919.
and properties of hydrogels: Their applications in drug
delivery and agriculture. J Mater Chem B, 10(2): 170–203. http://doi:10.3390/ijms160816897
Volume 9 Issue 6 (2023) 492 https://doi.org/10.36922/ijb.1089

