Page 500 - IJB-9-6
P. 500

International Journal of Bioprinting                              Bioprinting cell-laden protein-based hydrogel




            31.  Abascal NC, Regan L, 2018, The past, present and future of   http://doi:10.1039/D1TB01345A
               protein-based materials. Open Biol, 8(10): 180113.
                                                               42.  Chakraborty J, Ghosh S, 2020, Cellular proliferation, self-
               http://doi:10.1098/rsob.180113                     assembly, and modulation of signaling pathways in  silk
            32.  Jeshvaghani PA, Pourmadadi M, Yazdian F,  et al., 2023,   fibroin gelatin-based 3D bioprinted constructs.  ACS Appl
               Synthesis  and  characterization  of  a  novel,  pH-responsive   Bio Mater, 3(12): 8309–8320.
               sustained release nanocarrier using polyethylene glycol,   http://doi:10.1021/acsabm.0c01252
               graphene oxide, and natural silk fibroin protein by a green   43.  Bakhtiary N, Ghalandari B, Ghorbani F,  et al., 2023,
               nano emulsification method to enhance cancer treatment.   Advances in peptide-based hydrogel for tissue engineering.
               Int J Biol Macromol, 226: 1100–1115.
                                                                  Polymers (Basel), 15(5): 1068.
               http://doi:10.1016/j.ijbiomac.2022.11.226
                                                                  http://doi:10.3390/polym15051068
            33.  Hajiabbas M, Okoro OV, Delporte C, et al., 2023, Proteins   44.  Huettner  N,  Dargaville  TR,  Forget  A,  2018,  Discovering
               and polypeptides as biomaterials inks for 3D printing, in   cell-adhesion peptides in tissue engineering: Beyond RGD.
               Handbook of the Extracellular Matrix, Springer International   Trends Biotechnol, 36(4): 372–383.
               Publishing, Cham, 2023, 1–34.
                                                                  http://doi:10.1016/j.tibtech.2018.01.008
               http://doi:10.1007/978-3-030-92090-6_15-1
                                                               45.  Gao G, Cui X, Bone BÁ,  et al., 2016, Three-dimensional
            34.  Gagner JE, Kim W, Chaikof EL, 2014, Designing protein-  bioprinting in tissue engineering and regenerative medicine.
               based biomaterials for medical applications. Acta Biomater,   Biotechnol Lett, 38: 422–434.
               10(4): 1542–1557.
                                                                  http://doi:10.1007/s10529-015-1975-1
               http://doi:10.1016/j.actbio.2013.10.001
                                                               46.  Tasoglu S, Demirci U, 2013, Bioprinting for stem cell
            35.  Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting   research. Trends Biotechnol, 31(1): 10–19.
               of collagen to rebuild components of the human heart.
               Science, 365(6452): 482–487.                       http://doi:10.1016/j.tibtech.2012.10.005
               http://doi:10.1126/science.aav9051              47.  Riba J, Renz N, Niemöller C, et al., 2016, Molecular genetic
                                                                  characterization of individual cancer cells isolated via single-
            36.  Łabowska MB, Cierluk K, Jankowska AM,  et  al., 2021, A   cell printing. PLoS One, 11(9): e0163455.
               review on the adaption of alginate-gelatin hydrogels for 3D
               cultures and bioprinting. Materials (Basel), 14(4): 858.  http://doi:10.1371/journal.pone.0163455
               http://doi:10.3390/ma14040858                   48.  Stumpf F, Schoendube J, Gross A,  et al., 2015, Single-cell
                                                                  PCR of genomic DNA enabled by automated single-cell
            37.  Liu S, Yu J-M, Gan Y-C,  et al., 2023, Biomimetic natural   printing for cell isolation. Biosens Bioelectron, 69: 301–306.
               biomaterials for tissue engineering and regenerative
               medicine: New biosynthesis methods, recent advances, and   http://doi:10.1016/j.bios.2015.03.008
               emerging applications. Mil Med Res, 10(1): 16.  49.  Zhang X, Wei X, Wei Y, et al., 2020, The up-to-date strategies
               http://doi:10.1186/s40779-023-00448-w              for the isolation and manipulation of single cells. Talanta,
                                                                  218: 121147.
            38.  Cheung H-Y, Lau K-T, Lu T-P, et al., 2007, A critical review
               on polymer-based bio-engineered materials for scaffold   http://doi:10.1016/j.talanta.2020.121147
               development. Compos Part B Eng, 38(3): 291–300.  50.  Herzenberg LA, Parks D, Sahaf B, et al., 2002, The history
               http://doi:10.1016/j.compositesb.2006.06.014       and future of the fluorescence activated cell sorter and
                                                                  flow cytometry: A view from stanford. Clin Chem, 48(10):
            39.  Al Enezy‐Ulbrich MA, Malyaran H, Lange RD, et al., 2020,   1819–1827.
               Impact of reactive amphiphilic copolymers on mechanical
               properties and cell responses of fibrin‐based hydrogels. Adv   http://doi:10.1093/clinchem/48.10.1819
               Funct Mater, 30(38): 2003528.                   51.  Zhou Y, Shaw D, Lam C, et al., 2018, Beating the odds: The
               http://doi:10.1002/adfm.202003528                  poisson distribution of all input cells during limiting dilution
                                                                  grossly underestimates whether a cell line is clonally-derived
            40.  Vernerey FJ, Greenwald EC, Bryant SJ, 2012, Triphasic mixture   or not. Biotechnol Prog, 34(3): 559–569.
               model of cell-mediated enzymatic degradation of hydrogels.
               Comput Methods Biomech Biomed Engin, 15(11): 1197–1210.  http://doi:10.1002/btpr.2560
               http://doi:10.1080/10255842.2011.585973         52.  Gross A, Schoendube J, Zimmermann S,  et al., 2015,
                                                                  Technologies for single-cell isolation. Int J Mol Sci, 16(8):
            41.  Khan F, Atif M, Haseen M, et al., 2022, Synthesis, classification   16897–16919.
               and properties of hydrogels: Their applications in drug
               delivery and agriculture. J Mater Chem B, 10(2): 170–203.  http://doi:10.3390/ijms160816897


            Volume 9 Issue 6 (2023)                        492                          https://doi.org/10.36922/ijb.1089
   495   496   497   498   499   500   501   502   503   504   505