Page 505 - IJB-9-6
P. 505
International Journal of Bioprinting Bioprinting cell-laden protein-based hydrogel
and C-telopeptides of type II collagen in a rat model of 153. Zhou Q, Cai Y, Lin X, 2020, The dual character of exosomes
osteoarthritis. Pharmacology, 101: 1–8. in osteoarthritis: Antagonists and therapeutic agents. Acta
Biomater, 105: 15–25.
http://doi:10.1159/000479160
http://doi:10.1016/j.actbio.2020.01.040
143. Street J, Bao M, DeGuzman L, et al., 2002, Vascular
endothelial growth factor stimulates bone repair by 154. Isaeva EV, Beketov EE, Demyashkin GA, et al., 2022,
promoting angiogenesis and bone turnover. Proc Natl Acad Cartilage formation in vivo using high concentration
Sci, 99: 9656–9661. collagen-based bioink with MSC and decellularized ECM
granules. Int J Mol Sci, 23: 2703.
http://doi:10.1073/pnas.152324099
http://doi:10.3390/ijms23052703
144. Mi L, Liu H, Gao Y, et al., 2017, Injectable nanoparticles/
hydrogels composite as sustained release system with stromal 155. Marcu IC, Illaste A, Heuking P, et al., 2015, Functional
cell-derived factor-1α for calvarial bone regeneration. characterization and comparison of intercellular
Int J Biol Macromol, 101: 341–347. communication in stem cell-derived cardiomyocytes. Stem
Cells, 33: 2208–2218.
http://doi:10.1016/j.ijbiomac.2017.03.098
http://doi:10.1002/stem.2009
145. Fujioka-Kobayashi M, Ota MS, Shimoda A, et al., 2012,
Cholesteryl group- and acryloyl group-bearing pullulan 156. Tang J, Peng R, Ding J, 2010, The regulation of stem cell
nanogel to deliver BMP2 and FGF18 for bone tissue differentiation by cell-cell contact on micropatterned
engineering. Biomaterials, 33: 7613–7620. material surfaces. Biomaterials, 31: 2470–2476.
http://doi:10.1016/j.biomaterials.2012.06.075 http://doi:10.1016/j.biomaterials.2009.12.006
146. Fahimipour F, Dashtimoghadam E, Mahdi Hasani-Sadrabadi 157. Xu F, Sridharan B, Wang S, et al., 2011, Embryonic stem cell
M, et al., 2019, Enhancing cell seeding and osteogenesis bioprinting for uniform and controlled size embryoid body
of MSCs on 3D printed scaffolds through injectable formation. Biomicrofluidics, 5: 022207.
BMP2 immobilized ECM-Mimetic gel. Dent Mater, 35: http://doi:10.1063/1.3580752
990–1006.
158. Bourget J-M, Kérourédan O, Medina M, et al., 2016,
http://doi:10.1016/j.dental.2019.04.004
Patterning of endothelial cells and mesenchymal stem cells
147. Groll J, Burdick JA, Cho D-W, et al., 2018, A definition by laser-assisted bioprinting to study cell migration. Biomed
of bioinks and their distinction from biomaterial inks. Res Int, 2016: 1–7.
Biofabrication, 11: 013001.
http://doi:10.1155/2016/3569843
http://doi:10.1088/1758-5090/aaec52
159. Kolesky DB, Truby RL, Gladman AS, et al., 2014, 3D
148. Colombo M, Bianchi A, 2010, Click chemistry for the bioprinting of vascularized, heterogeneous cell-laden tissue
synthesis of RGD-containing integrin ligands. Molecules, 15: constructs. Adv Mater, 26: 3124–3130.
178–197.
http://doi:10.1002/adma.201305506
http://doi:10.3390/molecules15010178
160. Jakus AE, Rutz AL, Shah RN, 2016, Advancing the field of
149. Panwar A, Tan L, 2016, Current status of bioinks for micro- 3D biomaterial printing. Biomed Mater, 11: 014102.
extrusion-based 3D bioprinting. Molecules, 21: 685.
http://doi:10.1088/1748-6041/11/1/014102
http://doi:10.3390/molecules21060685
161. Ovsianikov A, James Y, Vladimir M, 2018, 3D printing and
150. Byambaa B, Annabi N, Yue K, et al., 2017, Bioprinted biofabrication. Springer International Publishing.
osteogenic and vasculogenic patterns for engineering 3D 162. Morgan FLC, Moroni L, Baker MB, 2020, Dynamic bioinks
bone tissue. Adv Healthc Mater, 6: 1700015.
to advance bioprinting. Adv Healthc Mater, 9: 1901798.
http://doi:10.1002/adhm.201700015
http://doi:10.1002/adhm.201901798
151. Wang B, Díaz-Payno PJ, Browe DC, et al., 2021, Affinity- 163. Nicodemus GD, Bryant SJ, 2008, Cell encapsulation in
bound growth factor within sulfated interpenetrating biodegradable hydrogels for tissue engineering applications.
network bioinks for bioprinting cartilaginous tissues. Acta Tissue Eng Part B Rev, 14: 149–165.
Biomater, 128: 130–142.
http://doi:10.1089/ten.teb.2007.0332
http://doi:10.1016/j.actbio.2021.04.016
164. Li H, Tan C, Li L, 2018, Review of 3D printable hydrogels
152. Xie M, Wu D, Li G, et al., 2021, Exosomes targeted towards and constructs. Mater Des, 159: 20–38.
applications in regenerative medicine. Nano Sel, 2: 880–908.
http://doi:10.1016/j.matdes.2018.08.023
http://doi:10.1002/nano.202000251
Volume 9 Issue 6 (2023) 497 https://doi.org/10.36922/ijb.1089

