Page 505 - IJB-9-6
P. 505

International Journal of Bioprinting                              Bioprinting cell-laden protein-based hydrogel




               and C-telopeptides of type II collagen in a rat model of   153. Zhou Q, Cai Y, Lin X, 2020, The dual character of exosomes
               osteoarthritis. Pharmacology, 101: 1–8.            in osteoarthritis: Antagonists and therapeutic agents. Acta
                                                                  Biomater, 105: 15–25.
               http://doi:10.1159/000479160
                                                                  http://doi:10.1016/j.actbio.2020.01.040
            143. Street J, Bao M, DeGuzman L,  et al., 2002, Vascular
               endothelial growth  factor  stimulates  bone  repair  by   154. Isaeva EV, Beketov EE, Demyashkin GA,  et al., 2022,
               promoting angiogenesis and bone turnover. Proc Natl Acad   Cartilage formation in vivo using high concentration
               Sci, 99: 9656–9661.                                collagen-based bioink with MSC and decellularized ECM
                                                                  granules. Int J Mol Sci, 23: 2703.
               http://doi:10.1073/pnas.152324099
                                                                  http://doi:10.3390/ijms23052703
            144. Mi L, Liu H, Gao Y, et al., 2017, Injectable nanoparticles/
               hydrogels composite as sustained release system with stromal   155. Marcu IC, Illaste A, Heuking P,  et al., 2015, Functional
               cell-derived factor-1α for calvarial bone regeneration.    characterization  and  comparison  of  intercellular
               Int J Biol Macromol, 101: 341–347.                 communication in stem cell-derived cardiomyocytes. Stem
                                                                  Cells, 33: 2208–2218.
               http://doi:10.1016/j.ijbiomac.2017.03.098
                                                                  http://doi:10.1002/stem.2009
            145. Fujioka-Kobayashi M, Ota MS, Shimoda A,  et al., 2012,
               Cholesteryl group- and acryloyl group-bearing pullulan   156. Tang J, Peng R, Ding J, 2010, The regulation of stem cell
               nanogel to deliver BMP2 and FGF18 for bone tissue   differentiation  by  cell-cell  contact  on  micropatterned
               engineering. Biomaterials, 33: 7613–7620.          material surfaces. Biomaterials, 31: 2470–2476.
               http://doi:10.1016/j.biomaterials.2012.06.075      http://doi:10.1016/j.biomaterials.2009.12.006
            146. Fahimipour F, Dashtimoghadam E, Mahdi Hasani-Sadrabadi   157. Xu F, Sridharan B, Wang S, et al., 2011, Embryonic stem cell
               M,  et al.,  2019, Enhancing cell seeding  and osteogenesis   bioprinting for uniform and controlled size embryoid body
               of MSCs on 3D printed scaffolds through injectable   formation. Biomicrofluidics, 5: 022207.
               BMP2 immobilized ECM-Mimetic gel.  Dent Mater, 35:    http://doi:10.1063/1.3580752
               990–1006.
                                                               158. Bourget  J-M,  Kérourédan  O,  Medina  M,  et al.,  2016,
               http://doi:10.1016/j.dental.2019.04.004
                                                                  Patterning of endothelial cells and mesenchymal stem cells
            147. Groll J, Burdick JA, Cho D-W,  et al., 2018, A definition   by laser-assisted bioprinting to study cell migration. Biomed
               of bioinks and their distinction from biomaterial inks.   Res Int, 2016: 1–7.
               Biofabrication, 11: 013001.
                                                                  http://doi:10.1155/2016/3569843
               http://doi:10.1088/1758-5090/aaec52
                                                               159. Kolesky DB, Truby RL, Gladman AS,  et al., 2014, 3D
            148. Colombo M, Bianchi A, 2010, Click chemistry for the   bioprinting of vascularized, heterogeneous cell-laden tissue
               synthesis of RGD-containing integrin ligands. Molecules, 15:   constructs. Adv Mater, 26: 3124–3130.
               178–197.
                                                                  http://doi:10.1002/adma.201305506
               http://doi:10.3390/molecules15010178
                                                               160. Jakus AE, Rutz AL, Shah RN, 2016, Advancing the field of
            149. Panwar A, Tan L, 2016, Current status of bioinks for micro-  3D biomaterial printing. Biomed Mater, 11: 014102.
               extrusion-based 3D bioprinting. Molecules, 21: 685.
                                                                  http://doi:10.1088/1748-6041/11/1/014102
               http://doi:10.3390/molecules21060685
                                                               161. Ovsianikov A, James Y, Vladimir M, 2018, 3D printing and
            150. Byambaa B, Annabi N, Yue K,  et al., 2017, Bioprinted   biofabrication. Springer International Publishing.
               osteogenic and  vasculogenic  patterns  for engineering 3D   162. Morgan FLC, Moroni L, Baker MB, 2020, Dynamic bioinks
               bone tissue. Adv Healthc Mater, 6: 1700015.
                                                                  to advance bioprinting. Adv Healthc Mater, 9: 1901798.
               http://doi:10.1002/adhm.201700015
                                                                  http://doi:10.1002/adhm.201901798
            151. Wang B, Díaz-Payno PJ, Browe DC, et al., 2021, Affinity-  163. Nicodemus  GD,  Bryant  SJ,  2008,  Cell  encapsulation  in
               bound  growth  factor  within  sulfated  interpenetrating   biodegradable hydrogels for tissue engineering applications.
               network bioinks for bioprinting cartilaginous tissues. Acta   Tissue Eng Part B Rev, 14: 149–165.
               Biomater, 128: 130–142.
                                                                  http://doi:10.1089/ten.teb.2007.0332
               http://doi:10.1016/j.actbio.2021.04.016
                                                               164. Li H, Tan C, Li L, 2018, Review of 3D printable hydrogels
            152. Xie M, Wu D, Li G, et al., 2021, Exosomes targeted towards   and constructs. Mater Des, 159: 20–38.
               applications in regenerative medicine. Nano Sel, 2: 880–908.
                                                                  http://doi:10.1016/j.matdes.2018.08.023
               http://doi:10.1002/nano.202000251



            Volume 9 Issue 6 (2023)                        497                          https://doi.org/10.36922/ijb.1089
   500   501   502   503   504   505   506   507   508   509   510