Page 506 - IJB-9-6
P. 506
International Journal of Bioprinting Bioprinting cell-laden protein-based hydrogel
165. Mu X, Agostinacchio F, Xiang N, et al., 2021, Recent advances 177. Nikoomanzari E, Karbasi M, Melo WCMA, et al., 2022,
in 3D printing with protein-based inks. Prog Polym Sci, 115: Impressive strides in antibacterial performance amelioration
101375. of Ti-based implants via plasma electrolytic oxidation
(PEO): A review of the recent advancements. Chem Eng J,
http://doi:10.1016/j.progpolymsci.2021.101375
441: 136003.
166. Simorgh S, Milan PB, Saadatmand M, et al., 2021, Human
olfactory mucosa stem cells delivery using a collagen http://doi:10.1016/j.cej.2022.136003
hydrogel: As a potential candidate for bone tissue 178. Adhikari J, Roy A, Das A, et al., 2021, Effects of processing
engineering. Materials (Basel), 14: 1–17. parameters of 3D bioprinting on the cellular activity of
bioinks. Macromol Biosci, 21(1): 2000179.
http://doi:10.3390/ma14143909
http://doi:10.1002/mabi.202000179
167. Wu X, Rapoport TA, 2018, Mechanistic insights into ER-
associated protein degradation. Curr Opin Cell Biol, 53: 179. Hull SM, Brunel LG, Heilshorn SC, 2022, 3D bioprinting of
22–28. cell‐laden hydrogels for improved biological functionality.
Adv Mater, 34(2): 2103691.
http://doi:10.1016/j.ceb.2018.04.004
http://doi:10.1002/adma.202103691
168. Verbeek CJR, van den Berg LE, 2010, Extrusion processing
and properties of protein-based thermoplastics. Macromol 180. Jaspe J, Hagen SJ, 2006, Do protein molecules unfold in a
Mater Eng, 295(1): 10–21. simple shear flow? Biophys J, 91(9): 3415–3424.
http://doi:10.1002/mame.200900167 http://doi:10.1529/biophysj.106.089367
169. Rutz AL, Lewis PL, Shah RN, 2017, Toward next-generation 181. Nishioka GM, Markey AA, Holloway CK, 2004. Protein
bioinks: Tuning material properties pre- and post-printing damage in drop-on-demand printers. J Am Chem Soc,
to optimize cell viability. MRS Bull, 42(8): 563–570. 126(4): 16320–16321.
http://doi:10.1557/mrs.2017.162 http://doi.org/10.1021/ja044539z
170. Kabirian F, Mozafari M, 2020, Decellularized ECM-derived 182. Delaney JT, Smith PJ, Schubert US, 2009, Inkjet printing of
bioinks: Prospects for the future. Methods, 171: 108–118. proteins. Soft Matter, 5(24): 4866–4877.
http://doi:10.1016/j.ymeth.2019.04.019 http://doi:10.1039/b909878j
171. Pugliese R, Beltrami B, Regondi S, et al., 2021, Polymeric 183. Schwab A, Levato R, D’Este M, et al., 2020, Printability
biomaterials for 3D printing in medicine: An overview. Ann and shape fidelity of bioinks in 3D bioprinting. Chem Rev,
3D Print Med, 2: 100011. 120(19): 11028–11055.
http://doi:10.1016/j.stlm.2021.100011 http://doi:10.1021/acs.chemrev.0c00084
172. Parker ST, Domachuk P, Amsden J, et al., 2009, Biocompatible 184. Neumann TV, Dickey MD, 2020, Liquid metal direct write
silk printed optical waveguides. Adv Mater, 21: 2411–2415. and 3D printing: A review. Adv Mater Technol, 5(9): 2000070.
http://doi:10.1002/adma.200801580 http://doi:10.1002/admt.202000070
173. Ramesh S, Harrysson OLA, Rao PK, et al., 2021, Extrusion 185. Amorim PA, D’Ávila MA, Anand R, et al., 2021, Insights on
bioprinting: Recent progress, challenges, and future shear rheology of inks for extrusion-based 3D bioprinting.
opportunities. Bioprinting, 21: e00116. Bioprinting, 22: e00129.
http://doi:10.1016/j.bprint.2020.e00116 http://doi:10.1016/j.bprint.2021.e00129
174. Bedell ML, Navara AM, Du Y, et al., 2020, Polymeric systems 186. Joshi YM, Petekidis G, 2018, Yield stress fluids and ageing.
for bioprinting. Chem Rev, 120(19): 10744–10792. Rheol Acta, 57(6-7): 521–549.
http://doi:10.1021/acs.chemrev.9b00834 http://doi:10.1007/s00397-018-1096-6
175. Chakraborty J, Mu X, Pramanick A, et al., 2022, Recent 187. Mouser VHM, Melchels FPW, Visser J, et al., 2016, Yield
advances in bioprinting using silk protein-based bioinks. stress determines bioprintability of hydrogels based
Biomaterials, 287: 121672. on gelatin-methacryloyl and gellan gum for cartilage
bioprinting. Biofabrication, 8(3): 035003.
http://doi:10.1016/j.biomaterials.2022.121672
http://doi:10.1088/1758-5090/8/3/035003
176. Zhou J, Zhang B, Shi L, et al., 2014, Regenerated silk fibroin
films with controllable nanostructure size and secondary 188. Sommer MR, Alison L, Minas C, et al., 2017, 3D printing of
structure for drug delivery. ACS Appl Mater Interfaces, 6(24): concentrated emulsions into multiphase biocompatible soft
21813–21821. materials. Soft Matter, 13(9): 1794–1803.
http://doi:10.1021/am502278b http://doi:10.1039/C6SM02682F
Volume 9 Issue 6 (2023) 498 https://doi.org/10.36922/ijb.1089

