Page 506 - IJB-9-6
P. 506

International Journal of Bioprinting                              Bioprinting cell-laden protein-based hydrogel




            165. Mu X, Agostinacchio F, Xiang N, et al., 2021, Recent advances   177. Nikoomanzari E, Karbasi M, Melo WCMA,  et al., 2022,
               in 3D printing with protein-based inks. Prog Polym Sci, 115:   Impressive strides in antibacterial performance amelioration
               101375.                                            of Ti-based implants via plasma electrolytic oxidation
                                                                  (PEO): A review of the recent advancements. Chem Eng J,
               http://doi:10.1016/j.progpolymsci.2021.101375
                                                                  441: 136003.
            166. Simorgh S, Milan PB, Saadatmand M, et al., 2021, Human
               olfactory mucosa stem cells delivery using a collagen   http://doi:10.1016/j.cej.2022.136003
               hydrogel: As a potential candidate for bone tissue   178. Adhikari J, Roy A, Das A, et al., 2021, Effects of processing
               engineering. Materials (Basel), 14: 1–17.          parameters of 3D bioprinting on the cellular activity of
                                                                  bioinks. Macromol Biosci, 21(1): 2000179.
               http://doi:10.3390/ma14143909
                                                                  http://doi:10.1002/mabi.202000179
            167. Wu  X,  Rapoport TA,  2018,  Mechanistic  insights  into  ER-
               associated protein degradation.  Curr Opin Cell Biol, 53:   179. Hull SM, Brunel LG, Heilshorn SC, 2022, 3D bioprinting of
               22–28.                                             cell‐laden hydrogels for improved biological functionality.
                                                                  Adv Mater, 34(2): 2103691.
               http://doi:10.1016/j.ceb.2018.04.004
                                                                  http://doi:10.1002/adma.202103691
            168. Verbeek CJR, van den Berg LE, 2010, Extrusion processing
               and properties of protein-based thermoplastics. Macromol   180. Jaspe J, Hagen SJ, 2006, Do protein molecules unfold in a
               Mater Eng, 295(1): 10–21.                          simple shear flow? Biophys J, 91(9): 3415–3424.
               http://doi:10.1002/mame.200900167                  http://doi:10.1529/biophysj.106.089367
            169. Rutz AL, Lewis PL, Shah RN, 2017, Toward next-generation   181. Nishioka GM, Markey AA, Holloway CK, 2004. Protein
               bioinks: Tuning material properties pre- and post-printing   damage in drop-on-demand printers.  J Am Chem Soc,
               to optimize cell viability. MRS Bull, 42(8): 563–570.  126(4): 16320–16321.
               http://doi:10.1557/mrs.2017.162                    http://doi.org/10.1021/ja044539z
            170. Kabirian F, Mozafari M, 2020, Decellularized ECM-derived   182. Delaney JT, Smith PJ, Schubert US, 2009, Inkjet printing of
               bioinks: Prospects for the future. Methods, 171: 108–118.  proteins. Soft Matter, 5(24): 4866–4877.
               http://doi:10.1016/j.ymeth.2019.04.019             http://doi:10.1039/b909878j
            171. Pugliese R, Beltrami B, Regondi S, et al., 2021, Polymeric   183. Schwab A, Levato R, D’Este M,  et al., 2020, Printability
               biomaterials for 3D printing in medicine: An overview. Ann   and shape fidelity of bioinks in 3D bioprinting. Chem Rev,
               3D Print Med, 2: 100011.                           120(19): 11028–11055.
               http://doi:10.1016/j.stlm.2021.100011              http://doi:10.1021/acs.chemrev.0c00084
            172. Parker ST, Domachuk P, Amsden J, et al., 2009, Biocompatible   184. Neumann TV, Dickey MD, 2020, Liquid metal direct write
               silk printed optical waveguides. Adv Mater, 21: 2411–2415.  and 3D printing: A review. Adv Mater Technol, 5(9): 2000070.
               http://doi:10.1002/adma.200801580                  http://doi:10.1002/admt.202000070
            173. Ramesh S, Harrysson OLA, Rao PK, et al., 2021, Extrusion   185. Amorim PA, D’Ávila MA, Anand R, et al., 2021, Insights on
               bioprinting: Recent progress, challenges, and future   shear rheology of inks for extrusion-based 3D bioprinting.
               opportunities. Bioprinting, 21: e00116.            Bioprinting, 22: e00129.
               http://doi:10.1016/j.bprint.2020.e00116            http://doi:10.1016/j.bprint.2021.e00129
            174. Bedell ML, Navara AM, Du Y, et al., 2020, Polymeric systems   186. Joshi YM, Petekidis G, 2018, Yield stress fluids and ageing.
               for bioprinting. Chem Rev, 120(19): 10744–10792.   Rheol Acta, 57(6-7): 521–549.
               http://doi:10.1021/acs.chemrev.9b00834             http://doi:10.1007/s00397-018-1096-6
            175. Chakraborty J, Mu X, Pramanick A,  et al., 2022, Recent   187. Mouser VHM, Melchels FPW, Visser J,  et al., 2016, Yield
               advances in bioprinting using silk protein-based bioinks.   stress determines bioprintability of hydrogels based
               Biomaterials, 287: 121672.                         on gelatin-methacryloyl and gellan gum for cartilage
                                                                  bioprinting. Biofabrication, 8(3): 035003.
               http://doi:10.1016/j.biomaterials.2022.121672
                                                                  http://doi:10.1088/1758-5090/8/3/035003
            176. Zhou J, Zhang B, Shi L, et al., 2014, Regenerated silk fibroin
               films with controllable nanostructure size and secondary   188. Sommer MR, Alison L, Minas C, et al., 2017, 3D printing of
               structure for drug delivery. ACS Appl Mater Interfaces, 6(24):   concentrated emulsions into multiphase biocompatible soft
               21813–21821.                                       materials. Soft Matter, 13(9): 1794–1803.
               http://doi:10.1021/am502278b                       http://doi:10.1039/C6SM02682F


            Volume 9 Issue 6 (2023)                        498                          https://doi.org/10.36922/ijb.1089
   501   502   503   504   505   506   507   508   509   510   511