Page 501 - IJB-9-6
P. 501

International Journal of Bioprinting                              Bioprinting cell-laden protein-based hydrogel




            53.  Zhang X, Li T, Liu F, et al., 2019, Comparative analysis of   http://doi:10.1063/1.4824394
               droplet-based ultra-high-throughput single-cell RNA-Seq   66.  Demirci U, Montesano G, 2007, Single cell epitaxy by
               systems. Mol Cell, 73(1): 130–142.e5.
                                                                  acoustic picolitre droplets. Lab Chip, 7(9): 1139.
               http://doi:10.1016/j.molcel.2018.10.020
                                                                  http://doi:10.1039/b704965j
            54.  Matuła K, Rivello F, Huck WTS, 2020, Single‐cell analysis   67.  Guo F, Mao Z, Chen Y,  et al., 2016, Three-dimensional
               using droplet microfluidics. Adv Biosyst, 4(1): 1900188.
                                                                  manipulation of single cells using surface acoustic waves.
               http://doi:10.1002/adbi.201900188                  Proc Natl Acad Sci, 113(6): 1522–1527.
            55.  Klein AM, Mazutis L, Akartuna I,  et al., 2015, Droplet   http://doi:10.1073/pnas.1524813113
               barcoding for single-cell transcriptomics applied to   68.  Bertassoni LE, 2022, Bioprinting of complex multicellular
               embryonic stem cells. Cell, 161(5): 1187–1201.
                                                                  organs with advanced functionality—recent progress and
               http://doi:10.1016/j.cell.2015.04.044              challenges ahead. Adv Mater, 34(3): 2101321.
            56.  Han X, Wang R, Zhou Y, et al., 2018, Mapping the mouse cell   http://doi:10.1002/adma.202101321
               atlas by microwell-seq. Cell, 172(5): 1091–1107.e17.
                                                               69.  Daly AC, Prendergast ME, Hughes AJ,  et al., 2021,
               http://doi:10.1016/j.cell.2018.02.001              Bioprinting for the biologist. Cell, 184(1): 18–32.
            57.  Rettig JR, Folch A, 2005, Large-scale single-cell trapping   http://doi:10.1016/j.cell.2020.12.002
               and imaging using microwell arrays.  Anal Chem, 77(17):    70.  Barron JA, Krizman DB, Ringeisen BR, 2005, Laser printing
               5628–5634.
                                                                  of single cells: Statistical analysis, cell viability, and stress.
               http://doi:10.1021/ac0505977                       Ann Biomed Eng, 33(2): 121–130.
            58.  Zhou Y, Basu S, Wohlfahrt KJ, et al., 2016, A microfluidic   http://doi:10.1007/s10439-005-8971-x
               platform for trapping, releasing and super-resolution imaging   71.  Yamaguchi S, Ueno A, Akiyama Y,  et al., 2012, Cell
               of single cells. Sensors Actuators B Chem, 232: 680–691.
                                                                  patterning through inkjet printing of one cell per droplet.
               http://doi:10.1016/j.snb.2016.03.131               Biofabrication, 4(4): 045005.
            59.  Tan W-H, Takeuchi S, 2007, A trap-and-release integrated   http://doi:10.1088/1758-5082/4/4/045005
               microfluidic system for dynamic microarray applications.   72.  Zhang K, Chou C-K, Xia X, et al., 2014, Block-cell-printing
               Proc Natl Acad Sci, 104(4): 1146–1151.
                                                                  for live single-cell printing.  Proc Natl Acad Sci, 111(8):
               http://doi:10.1073/pnas.0606625104                 2948–2953.
            60.  Calvert P, 2007, Printing cells. Science, 318(5848): 208–209.  http://doi:10.1073/pnas.1313661111
               http://doi:10.1126/science.1144212              73.  Zhou X, Wu H, Wen H, et al., 2022, Advances in single-cell
                                                                  printing. Micromachines, 13(1): 80.
            61.  Yusof A, Keegan H, Spillane CD,  et al., 2011, Inkjet-like
               printing of single-cells. Lab Chip, 11(14): 2447.  http://doi:10.3390/mi13010080
               http://doi:10.1039/c1lc20176j                   74.  Murphy SV, De Coppi P, Atala A, 2020, Opportunities and
                                                                  challenges of translational 3D bioprinting. Nat Biomed Eng,
            62.  Wang Y, Wang X, Pan T, et al., 2021, Label-free single-cell
               isolation enabled by microfluidic impact printing and real-  4(4): 370–380.
               time cellular recognition. Lab Chip, 21(19): 3695–3706.  http://doi:10.1038/s41551-019-0471-7
               http://doi:10.1039/D1LC00326G                   75.  Zhang P, Abate AR, 2020, High‐definition single‐cell
                                                                  printing: Cell‐by‐cell fabrication of biological structures.
            63.  Schoendube J, Wright D, Zengerle R, et al., 2015, Single-cell
               printing based on impedance detection.  Biomicrofluidics,   Adv Mater, 32(52): 2005346.
               9(1): 014117.                                      http://doi:10.1002/adma.202005346
               http://doi:10.1063/1.4907896                    76.  Hong S, Lee JY, Hwang C, et al., 2016, Inhibition of Rho-
                                                                  associated protein kinase increases the angiogenic potential
            64.  Nagai M, Kato K, Soga S,  et al., 2020, Scalable parallel
               manipulation  of  single cells using micronozzle array   of mesenchymal stem cell aggregates via paracrine effects.
               integrated with bidirectional electrokinetic pumps.   Tissue Eng Part A, 22(3-4): 233–243.
               Micromachines, 11(4): 442.                         http://doi:10.1089/ten.tea.2015.0289
               http://doi:10.3390/mi11040442                   77.  Lei J, Trevino E, Temenoff J, 2016, Cell number and
                                                                  chondrogenesis in human mesenchymal stem cell aggregates
            65.  Feng L, Sun Y, Ohsumi C, et al., 2013, Accurate dispensing
               system for single oocytes using air ejection. Biomicrofluidics,   is affected by the sulfation level of heparin used as a cell
               7(5): 054113.                                      coating. J Biomed Mater Res Part A, 104(7): 1817–1829.

            Volume 9 Issue 6 (2023)                        493                          https://doi.org/10.36922/ijb.1089
   496   497   498   499   500   501   502   503   504   505   506