Page 501 - IJB-9-6
P. 501
International Journal of Bioprinting Bioprinting cell-laden protein-based hydrogel
53. Zhang X, Li T, Liu F, et al., 2019, Comparative analysis of http://doi:10.1063/1.4824394
droplet-based ultra-high-throughput single-cell RNA-Seq 66. Demirci U, Montesano G, 2007, Single cell epitaxy by
systems. Mol Cell, 73(1): 130–142.e5.
acoustic picolitre droplets. Lab Chip, 7(9): 1139.
http://doi:10.1016/j.molcel.2018.10.020
http://doi:10.1039/b704965j
54. Matuła K, Rivello F, Huck WTS, 2020, Single‐cell analysis 67. Guo F, Mao Z, Chen Y, et al., 2016, Three-dimensional
using droplet microfluidics. Adv Biosyst, 4(1): 1900188.
manipulation of single cells using surface acoustic waves.
http://doi:10.1002/adbi.201900188 Proc Natl Acad Sci, 113(6): 1522–1527.
55. Klein AM, Mazutis L, Akartuna I, et al., 2015, Droplet http://doi:10.1073/pnas.1524813113
barcoding for single-cell transcriptomics applied to 68. Bertassoni LE, 2022, Bioprinting of complex multicellular
embryonic stem cells. Cell, 161(5): 1187–1201.
organs with advanced functionality—recent progress and
http://doi:10.1016/j.cell.2015.04.044 challenges ahead. Adv Mater, 34(3): 2101321.
56. Han X, Wang R, Zhou Y, et al., 2018, Mapping the mouse cell http://doi:10.1002/adma.202101321
atlas by microwell-seq. Cell, 172(5): 1091–1107.e17.
69. Daly AC, Prendergast ME, Hughes AJ, et al., 2021,
http://doi:10.1016/j.cell.2018.02.001 Bioprinting for the biologist. Cell, 184(1): 18–32.
57. Rettig JR, Folch A, 2005, Large-scale single-cell trapping http://doi:10.1016/j.cell.2020.12.002
and imaging using microwell arrays. Anal Chem, 77(17): 70. Barron JA, Krizman DB, Ringeisen BR, 2005, Laser printing
5628–5634.
of single cells: Statistical analysis, cell viability, and stress.
http://doi:10.1021/ac0505977 Ann Biomed Eng, 33(2): 121–130.
58. Zhou Y, Basu S, Wohlfahrt KJ, et al., 2016, A microfluidic http://doi:10.1007/s10439-005-8971-x
platform for trapping, releasing and super-resolution imaging 71. Yamaguchi S, Ueno A, Akiyama Y, et al., 2012, Cell
of single cells. Sensors Actuators B Chem, 232: 680–691.
patterning through inkjet printing of one cell per droplet.
http://doi:10.1016/j.snb.2016.03.131 Biofabrication, 4(4): 045005.
59. Tan W-H, Takeuchi S, 2007, A trap-and-release integrated http://doi:10.1088/1758-5082/4/4/045005
microfluidic system for dynamic microarray applications. 72. Zhang K, Chou C-K, Xia X, et al., 2014, Block-cell-printing
Proc Natl Acad Sci, 104(4): 1146–1151.
for live single-cell printing. Proc Natl Acad Sci, 111(8):
http://doi:10.1073/pnas.0606625104 2948–2953.
60. Calvert P, 2007, Printing cells. Science, 318(5848): 208–209. http://doi:10.1073/pnas.1313661111
http://doi:10.1126/science.1144212 73. Zhou X, Wu H, Wen H, et al., 2022, Advances in single-cell
printing. Micromachines, 13(1): 80.
61. Yusof A, Keegan H, Spillane CD, et al., 2011, Inkjet-like
printing of single-cells. Lab Chip, 11(14): 2447. http://doi:10.3390/mi13010080
http://doi:10.1039/c1lc20176j 74. Murphy SV, De Coppi P, Atala A, 2020, Opportunities and
challenges of translational 3D bioprinting. Nat Biomed Eng,
62. Wang Y, Wang X, Pan T, et al., 2021, Label-free single-cell
isolation enabled by microfluidic impact printing and real- 4(4): 370–380.
time cellular recognition. Lab Chip, 21(19): 3695–3706. http://doi:10.1038/s41551-019-0471-7
http://doi:10.1039/D1LC00326G 75. Zhang P, Abate AR, 2020, High‐definition single‐cell
printing: Cell‐by‐cell fabrication of biological structures.
63. Schoendube J, Wright D, Zengerle R, et al., 2015, Single-cell
printing based on impedance detection. Biomicrofluidics, Adv Mater, 32(52): 2005346.
9(1): 014117. http://doi:10.1002/adma.202005346
http://doi:10.1063/1.4907896 76. Hong S, Lee JY, Hwang C, et al., 2016, Inhibition of Rho-
associated protein kinase increases the angiogenic potential
64. Nagai M, Kato K, Soga S, et al., 2020, Scalable parallel
manipulation of single cells using micronozzle array of mesenchymal stem cell aggregates via paracrine effects.
integrated with bidirectional electrokinetic pumps. Tissue Eng Part A, 22(3-4): 233–243.
Micromachines, 11(4): 442. http://doi:10.1089/ten.tea.2015.0289
http://doi:10.3390/mi11040442 77. Lei J, Trevino E, Temenoff J, 2016, Cell number and
chondrogenesis in human mesenchymal stem cell aggregates
65. Feng L, Sun Y, Ohsumi C, et al., 2013, Accurate dispensing
system for single oocytes using air ejection. Biomicrofluidics, is affected by the sulfation level of heparin used as a cell
7(5): 054113. coating. J Biomed Mater Res Part A, 104(7): 1817–1829.
Volume 9 Issue 6 (2023) 493 https://doi.org/10.36922/ijb.1089

