Page 502 - IJB-9-6
P. 502
International Journal of Bioprinting Bioprinting cell-laden protein-based hydrogel
http://doi:10.1002/jbm.a.35713 89. Kim SH, Yeon YK, Lee JM, et al., 2018, Precisely printable
and biocompatible silk fibroin bioink for digital light
78. Lin R-Z, Chang H-Y, 2008, Recent advances in three-
dimensional multicellular spheroid culture for biomedical processing 3D printing. Nat Commun, 9(1): 1–14.
research. Biotechnol J, 3(9-10): 1172–1184. http://doi:10.1038/s41467-018-03759-y
http://doi:10.1002/biot.200700228 90. Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting
for engineering complex tissues. Biotechnol Adv, (4).
79. Derby B, 2012, Printing and prototyping of tissues and
scaffolds. Science, 338(6109): 921–926. http://doi:10.1016/j.biotechadv.2015.12.011
http://doi:10.1126/science.1226340 91. Ren X, Wang F, Chen C, et al., 2016, Engineering zonal
cartilage through bioprinting collagen type II hydrogel
80. Marga F, Jakab K, Khatiwala C, et al., 2012, Toward
engineering functional organ modules by additive constructs with biomimetic chondrocyte density gradient.
manufacturing. Biofabrication, 4(2): 022001. BMC Musculoskelet Disord, 17(1): 1–10.
http://doi:10.1186/s12891-016-1130-8
http://doi:10.1088/1758-5082/4/2/022001
92. Kesti M, Eberhardt C, Pagliccia G, et al., 2015, Bioprinting
81. Marchioli G, van Gurp L, van Krieken PP, et al., 2015,
Fabrication of three-dimensional bioplotted hydrogel complex cartilaginous structures with clinically compliant
scaffolds for islets of Langerhans transplantation. biomaterials. Adv Funct Mater, 25(48): 7406–7417.
Biofabrication, 7(2): 025009. http://doi:10.1002/adfm.201503423
http://doi:10.1088/1758-5090/7/2/025009 93. López-Marcial GR, Zeng AY, Osuna C, et al., 2018, Agarose-
based hydrogels as suitable bioprinting materials for tissue
82. Tan Y, Richards DJ, Trusk TC, et al., 2014, 3D printing
facilitated scaffold-free tissue unit fabrication. Biofabrication, engineering. ACS Biomater Sci Eng, 4(10): 3610–3616.
6(2): 024111. http://doi:10.1021/acsbiomaterials.8b00903
http://doi:10.1088/1758-5082/6/2/024111 94. Luo Y, Luo G, Gelinsky M, et al., 2017, 3D bioprinting
scaffold using alginate/polyvinyl alcohol bioinks. Mater Lett,
83. Yang X, Sun Y, Wang Q, 2013, A phase field approach for 189: 295–298.
multicellular aggregate fusion in biofabrication. J Biomech
Eng, 135: 071005. http://doi:10.1016/j.matlet.2016.12.009
http://doi:10.1115/1.4024139 95. Asohan AW, Hashim R, Ku Ishak KM, et al., 2022,
Preparation and characterisation of cellulose nanocrystal/
84. Yang X, Mironov V, Wang Q, 2012, Modeling fusion of
cellular aggregates in biofabrication using phase field alginate/polyethylene glycol diacrylate (CNC/Alg/PEGDA)
theories. J Theor Biol, 303: 110–118. hydrogel using double network crosslinking technique for
bioprinting application. Appl Sci, 12(2): 771.
http://doi:10.1016/j.jtbi.2012.03.003
http://doi:10.3390/app12020771
85. Mironov V, Visconti RP, Kasyanov V, et al., 2009, Organ
printing: Tissue spheroids as building blocks. Biomaterials, 96. Hong S, Sycks D, Chan HF, et al., 2015, 3D printing of highly
30(12): 2164–2174. stretchable and tough hydrogels into complex, cellularized
structures. Adv Mater, 27(27): 4035–4040.
http://doi:10.1016/j.biomaterials.2008.12.084
http://doi:10.1002/adma.201501099
86. Keriquel V, Oliveira H, Rémy M, et al., 2017, In situ printing
of mesenchymal stromal cells, by laser-assisted bioprinting, 97. Kosik-Kozioł A, Costantini M, Bolek T, et al., 2017, PLA
for in vivo bone regeneration applications. Sci Rep, short sub-micron fiber reinforcement of 3D bioprinted
7(1): 1778. alginate constructs for cartilage regeneration. Biofabrication,
9(4): 044105.
http://doi:10.1038/s41598-017-01914-x
http://doi:10.1088/1758-5090/aa90d7
87. Adhikari J, Perwez MS, Das A, et al., 2021, Development of
hydroxyapatite reinforced alginate–chitosan based printable 98. Bakhtiary N, Liu C, Ghorbani F, 2021, Bioactive inks
biomaterial-ink. Nano-Structures Nano-Objects, 25: development for osteochondral tissue engineering: A mini-
100630. review. Gels, 7(4): 274.
http://doi:10.3390/gels7040274
http://doi:10.1016/j.nanoso.2020.100630
99. Das S, Pati F, Choi Y-J, et al., 2015, Bioprintable, cell-laden
88. Ozbolat IT, Hospodiuk M, 2016, Current advances and
future perspectives in extrusion-based bioprinting. silk fibroin–gelatin hydrogel supporting multilineage
Biomaterials, 76: 321–343. differentiation of stem cells for fabrication of three-
dimensional tissue constructs. Acta Biomater, 11: 233–246.
http://doi:10.1016/j.biomaterials.2015.10.076
http://doi:10.1016/j.actbio.2014.09.023
Volume 9 Issue 6 (2023) 494 https://doi.org/10.36922/ijb.1089

