Page 502 - IJB-9-6
P. 502

International Journal of Bioprinting                              Bioprinting cell-laden protein-based hydrogel




               http://doi:10.1002/jbm.a.35713                  89.  Kim SH, Yeon YK, Lee JM, et al., 2018, Precisely printable
                                                                  and  biocompatible  silk  fibroin  bioink  for  digital  light
            78.  Lin R-Z, Chang H-Y, 2008, Recent advances in three-
               dimensional multicellular spheroid culture for biomedical   processing 3D printing. Nat Commun, 9(1): 1–14.
               research. Biotechnol J, 3(9-10): 1172–1184.        http://doi:10.1038/s41467-018-03759-y
               http://doi:10.1002/biot.200700228               90.  Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting
                                                                  for engineering complex tissues. Biotechnol Adv, (4).
            79.  Derby B, 2012, Printing and prototyping of tissues and
               scaffolds. Science, 338(6109): 921–926.            http://doi:10.1016/j.biotechadv.2015.12.011
               http://doi:10.1126/science.1226340              91.  Ren X, Wang F, Chen C,  et al., 2016, Engineering zonal
                                                                  cartilage through bioprinting collagen type II hydrogel
            80.  Marga F, Jakab K, Khatiwala C,  et al., 2012, Toward
               engineering functional organ modules by additive   constructs with biomimetic chondrocyte density gradient.
               manufacturing. Biofabrication, 4(2): 022001.       BMC Musculoskelet Disord, 17(1): 1–10.
                                                                  http://doi:10.1186/s12891-016-1130-8
               http://doi:10.1088/1758-5082/4/2/022001
                                                               92.  Kesti M, Eberhardt C, Pagliccia G, et al., 2015, Bioprinting
            81.  Marchioli G,  van Gurp L, van Krieken PP,  et al., 2015,
               Fabrication of  three-dimensional  bioplotted hydrogel   complex cartilaginous structures with clinically compliant
               scaffolds for islets of Langerhans transplantation.   biomaterials. Adv Funct Mater, 25(48): 7406–7417.
               Biofabrication, 7(2): 025009.                      http://doi:10.1002/adfm.201503423
               http://doi:10.1088/1758-5090/7/2/025009         93.  López-Marcial GR, Zeng AY, Osuna C, et al., 2018, Agarose-
                                                                  based hydrogels as suitable bioprinting materials for tissue
            82.  Tan Y, Richards DJ, Trusk TC,  et  al., 2014, 3D printing
               facilitated scaffold-free tissue unit fabrication. Biofabrication,   engineering. ACS Biomater Sci Eng, 4(10): 3610–3616.
               6(2): 024111.                                      http://doi:10.1021/acsbiomaterials.8b00903
               http://doi:10.1088/1758-5082/6/2/024111         94.  Luo Y, Luo G, Gelinsky M,  et al., 2017, 3D bioprinting
                                                                  scaffold using alginate/polyvinyl alcohol bioinks. Mater Lett,
            83.  Yang X, Sun Y, Wang Q, 2013, A phase field approach for   189: 295–298.
               multicellular aggregate fusion in biofabrication. J Biomech
               Eng, 135: 071005.                                  http://doi:10.1016/j.matlet.2016.12.009
               http://doi:10.1115/1.4024139                    95.  Asohan  AW,  Hashim  R,  Ku  Ishak  KM,  et al.,  2022,
                                                                  Preparation and characterisation of cellulose nanocrystal/
            84.  Yang X, Mironov V, Wang Q, 2012, Modeling fusion of
               cellular aggregates  in  biofabrication using phase  field   alginate/polyethylene glycol diacrylate (CNC/Alg/PEGDA)
               theories. J Theor Biol, 303: 110–118.              hydrogel using double network crosslinking technique for
                                                                  bioprinting application. Appl Sci, 12(2): 771.
               http://doi:10.1016/j.jtbi.2012.03.003
                                                                  http://doi:10.3390/app12020771
            85.  Mironov V, Visconti RP, Kasyanov V,  et  al., 2009, Organ
               printing: Tissue spheroids as building blocks. Biomaterials,   96.  Hong S, Sycks D, Chan HF, et al., 2015, 3D printing of highly
               30(12): 2164–2174.                                 stretchable and tough hydrogels into complex, cellularized
                                                                  structures. Adv Mater, 27(27): 4035–4040.
               http://doi:10.1016/j.biomaterials.2008.12.084
                                                                  http://doi:10.1002/adma.201501099
            86.  Keriquel V, Oliveira H, Rémy M, et al., 2017, In situ printing
               of mesenchymal stromal cells, by laser-assisted bioprinting,   97.  Kosik-Kozioł A, Costantini M, Bolek T,  et al., 2017, PLA
               for  in  vivo  bone  regeneration  applications.  Sci Rep,    short sub-micron fiber reinforcement of 3D bioprinted
               7(1): 1778.                                        alginate constructs for cartilage regeneration. Biofabrication,
                                                                  9(4): 044105.
               http://doi:10.1038/s41598-017-01914-x
                                                                  http://doi:10.1088/1758-5090/aa90d7
            87.  Adhikari J, Perwez MS, Das A, et al., 2021, Development of
               hydroxyapatite reinforced alginate–chitosan based printable   98.  Bakhtiary N, Liu C, Ghorbani F, 2021, Bioactive inks
               biomaterial-ink.   Nano-Structures  Nano-Objects,  25:   development for osteochondral tissue engineering: A mini-
               100630.                                            review. Gels, 7(4): 274.
                                                                  http://doi:10.3390/gels7040274
               http://doi:10.1016/j.nanoso.2020.100630
                                                               99.  Das S, Pati F, Choi Y-J, et al., 2015, Bioprintable, cell-laden
            88.  Ozbolat IT, Hospodiuk M, 2016, Current advances and
               future  perspectives  in extrusion-based bioprinting.   silk  fibroin–gelatin hydrogel supporting  multilineage
               Biomaterials, 76: 321–343.                         differentiation of stem cells for fabrication of three-
                                                                  dimensional tissue constructs. Acta Biomater, 11: 233–246.
               http://doi:10.1016/j.biomaterials.2015.10.076
                                                                  http://doi:10.1016/j.actbio.2014.09.023


            Volume 9 Issue 6 (2023)                        494                          https://doi.org/10.36922/ijb.1089
   497   498   499   500   501   502   503   504   505   506   507