Page 503 - IJB-9-6
P. 503
International Journal of Bioprinting Bioprinting cell-laden protein-based hydrogel
100. Duan B, Kapetanovic E, Hockaday LAA, et al., 2014, Three- 111. Murphy SV, Atala A, 2014, 3D bioprinting of tissues and
dimensional printed trileaflet valve conduits using biological organs. Nat Biotechnol, 32(8): 773–785.
hydrogels and human valve interstitial cells. Acta Biomater, http://doi:10.1038/nbt.2958
10(5): 1836–1846.
112. Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink properties
http://doi:10.1016/j.actbio.2013.12.005
before, during and after 3D bioprinting. Biofabrication, 8(3):
101. Murphy SV, Skardal A, Atala A, 2013, Evaluation of 032002.
hydrogels for bio-printing applications. J Biomed Mater Res http://doi:10.1088/1758-5090/8/3/032002
- Part A, 101(1): 272–284.
113. Hinton TJ, Jallerat Q, Palchesko RN, et al., 2015, Three-
http://doi:10.1002/jbm.a.34326
dimensional printing of complex biological structures by
102. Williams D, Thayer P, Martinez H, et al., 2018, A perspective freeform reversible embedding of suspended hydrogels. Sci
on the physical, mechanical and biological specifications Adv, 1(9): 1500758.
of bioinks and the development of functional tissues in 3D http://doi:10.1126/sciadv.1500758
bioprinting. Bioprinting, 9: 19–36.
114. Zhang J, Wehrle E, Adamek P, et al., 2020, Optimization of
http://doi:10.1016/j.bprint.2018.02.003
mechanical stiffness and cell density of 3D bioprinted cell-
103. Tolabi H, Bakhtiary N, Sayadi S, et al., 2022, A critical review on laden scaffolds improves extracellular matrix mineralization
polydopamine surface-modified scaffolds in musculoskeletal and cellular organization for bone tissue engineering. Acta
regeneration. Front Bioeng Biotechnol, 10: 1008360. Biomater, 114: 307–322.
http://doi:10.3389/fbioe.2022.1008360 http://doi:10.1016/j.actbio.2020.07.016
104. Diamantides N, Wang L, Pruiksma T, et al., 2017, Correlating 115. Martyniak K, Lokshina A, Cruz MA, et al., 2022, Biomaterial
rheological properties and printability of collagen bioinks: composition and stiffness as decisive properties of 3D
The effects of riboflavin photocrosslinking and pH. bioprinted constructs for type II collagen stimulation. Acta
Biofabrication, 9(4): 034102. Biomater, 152: 221–234.
http://doi:10.1088/1758-5090/aa780f http://doi:10.1016/j.actbio.2022.08.058
105. Moncal KK, Ozbolat V, Datta P, et al., 2019, Thermally- 116. Allen NB, Abar B, Johnson L, et al., 2022, 3D-bioprinted
controlled extrusion-based bioprinting of collagen. J Mater GelMA-gelatin-hydroxyapatite osteoblast-laden composite
Sci Mater Med, 30(5): 55. hydrogels for bone tissue engineering. Bioprinting, 26:
e00196.
http://doi:10.1007/s10856-019-6258-2
http://doi:10.1016/j.bprint.2022.e00196
106. Rhee S, Puetzer JL, Mason BN, et al., 2016, 3D bioprinting
of spatially heterogeneous collagen constructs for cartilage 117. Lee JS, Park HS, Jung H, et al., 2020, Park, 3D-printable
tissue engineering. ACS Biomater Sci Eng, 2(10): 1800–1805. photocurable bioink for cartilage regeneration of tonsil-
derived mesenchymal stem cells. Addit Manuf, 33: 101136.
http://doi:10.1021/acsbiomaterials.6b00288
http://doi:10.1016/j.addma.2020.101136
107. Leucht A, Volz A-C, Rogal J, et al., 2020, Advanced
gelatin-based vascularization bioinks for extrusion-based 118. Bandyopadhyay A, Mandal BB, Bhardwaj N, 2022, 3D
bioprinting of vascularized bone equivalents. Sci Rep, 10(1): bioprinting of photo‐crosslinkable silk methacrylate
5330. (SilMA)‐polyethylene glycol diacrylate (PEGDA) bioink for
cartilage tissue engineering. J Biomed Mater Res Part A, 110:
http://doi:10.1038/s41598-020-62166-w
884–898.
108. Osidak EO, Kozhukhov VI, Osidak MS, 2020, Collagen http://doi:10.1002/jbm.a.37336
as bioink for bioprinting: A comprehensive review. Int
J Bioprint, 6(3): 270. 119. Rajput M, Mondal P, Yadav P, et al., 2022, Light-based 3D
bioprinting of bone tissue scaffolds with tunable mechanical
http://doi: 10.18063/ijb.v6i3.270
properties and architecture from photocurable silk fibroin.
109. de Melo BAG, Jodat YA, Cruz EM, et al., 2020, Strategies to Int J Biol Macromol, 202: 644–656.
use fibrinogen as bioink for 3D bioprinting fibrin-based soft
and hard tissues. Acta Biomater, 117: 60–76. http://doi:10.1016/j.ijbiomac.2022.01.081
120. Unagolla JM, Jayasuriya AC, 2020, Hydrogel-based
http://doi:10.1016/j.actbio.2020.09.024
3D bioprinting: A comprehensive review on cell-laden
110. Zhou Z, Cui J, Wu S, et al., 2022, Silk fibroin-based hydrogels, bioink formulations, and future perspectives.
biomaterials for cartilage/osteochondral repair. Theranostics, Appl Mater Today, 18: 100479.
12(11): 5103–5124.
http://doi:10.1016/j.apmt.2019.100479
http://doi:10.7150/thno.74548
Volume 9 Issue 6 (2023) 495 https://doi.org/10.36922/ijb.1089

