Page 503 - IJB-9-6
P. 503

International Journal of Bioprinting                              Bioprinting cell-laden protein-based hydrogel




            100. Duan B, Kapetanovic E, Hockaday LAA, et al., 2014, Three-  111. Murphy SV, Atala A, 2014, 3D bioprinting of tissues and
               dimensional printed trileaflet valve conduits using biological   organs. Nat Biotechnol, 32(8): 773–785.
               hydrogels and human valve interstitial cells. Acta Biomater,   http://doi:10.1038/nbt.2958
               10(5): 1836–1846.
                                                               112. Hölzl K, Lin S, Tytgat L,  et al., 2016, Bioink properties
               http://doi:10.1016/j.actbio.2013.12.005
                                                                  before, during and after 3D bioprinting. Biofabrication, 8(3):
            101. Murphy SV, Skardal A, Atala A, 2013, Evaluation of   032002.
               hydrogels for bio-printing applications. J Biomed Mater Res   http://doi:10.1088/1758-5090/8/3/032002
               - Part A, 101(1): 272–284.
                                                               113. Hinton TJ, Jallerat Q, Palchesko RN,  et al., 2015, Three-
               http://doi:10.1002/jbm.a.34326
                                                                  dimensional printing of complex biological structures by
            102. Williams D, Thayer P, Martinez H, et al., 2018, A perspective   freeform reversible embedding of suspended hydrogels. Sci
               on the physical, mechanical and biological specifications   Adv, 1(9): 1500758.
               of bioinks and the development of functional tissues in 3D   http://doi:10.1126/sciadv.1500758
               bioprinting. Bioprinting, 9: 19–36.
                                                               114. Zhang J, Wehrle E, Adamek P, et al., 2020, Optimization of
               http://doi:10.1016/j.bprint.2018.02.003
                                                                  mechanical stiffness and cell density of 3D bioprinted cell-
            103.  Tolabi H, Bakhtiary N, Sayadi S, et al., 2022, A critical review on   laden scaffolds improves extracellular matrix mineralization
               polydopamine surface-modified scaffolds in musculoskeletal   and cellular organization for bone tissue engineering. Acta
               regeneration. Front Bioeng Biotechnol, 10: 1008360.  Biomater, 114: 307–322.
               http://doi:10.3389/fbioe.2022.1008360              http://doi:10.1016/j.actbio.2020.07.016
            104. Diamantides N, Wang L, Pruiksma T, et al., 2017, Correlating   115. Martyniak K, Lokshina A, Cruz MA, et al., 2022, Biomaterial
               rheological properties and printability of collagen bioinks:   composition and stiffness as decisive properties of 3D
               The effects of riboflavin photocrosslinking and pH.   bioprinted constructs for type II collagen stimulation. Acta
               Biofabrication, 9(4): 034102.                      Biomater, 152: 221–234.
               http://doi:10.1088/1758-5090/aa780f                http://doi:10.1016/j.actbio.2022.08.058
            105. Moncal KK, Ozbolat V, Datta P,  et al., 2019, Thermally-  116. Allen NB, Abar B, Johnson L,  et al., 2022, 3D-bioprinted
               controlled extrusion-based bioprinting of collagen. J Mater   GelMA-gelatin-hydroxyapatite osteoblast-laden composite
               Sci Mater Med, 30(5): 55.                          hydrogels for bone tissue engineering.  Bioprinting, 26:
                                                                  e00196.
               http://doi:10.1007/s10856-019-6258-2
                                                                  http://doi:10.1016/j.bprint.2022.e00196
            106. Rhee S, Puetzer JL, Mason BN, et al., 2016, 3D bioprinting
               of spatially heterogeneous collagen constructs for cartilage   117. Lee JS, Park HS, Jung H,  et al., 2020, Park, 3D-printable
               tissue engineering. ACS Biomater Sci Eng, 2(10): 1800–1805.  photocurable bioink for cartilage regeneration of tonsil-
                                                                  derived mesenchymal stem cells. Addit Manuf, 33: 101136.
               http://doi:10.1021/acsbiomaterials.6b00288
                                                                  http://doi:10.1016/j.addma.2020.101136
            107. Leucht A, Volz A-C, Rogal J,  et al., 2020, Advanced
               gelatin-based vascularization bioinks for extrusion-based   118. Bandyopadhyay A, Mandal BB, Bhardwaj N, 2022, 3D
               bioprinting of vascularized bone equivalents. Sci Rep, 10(1):   bioprinting of photo‐crosslinkable silk methacrylate
               5330.                                              (SilMA)‐polyethylene glycol diacrylate (PEGDA) bioink for
                                                                  cartilage tissue engineering. J Biomed Mater Res Part A, 110:
               http://doi:10.1038/s41598-020-62166-w
                                                                  884–898.
            108. Osidak  EO, Kozhukhov VI, Osidak MS, 2020,  Collagen   http://doi:10.1002/jbm.a.37336
               as  bioink  for  bioprinting:  A  comprehensive  review.  Int
               J Bioprint, 6(3): 270.                          119. Rajput M, Mondal P, Yadav P, et al., 2022, Light-based 3D
                                                                  bioprinting of bone tissue scaffolds with tunable mechanical
               http://doi: 10.18063/ijb.v6i3.270
                                                                  properties and architecture from photocurable silk fibroin.
            109. de Melo BAG, Jodat YA, Cruz EM, et al., 2020, Strategies to   Int J Biol Macromol, 202: 644–656.
               use fibrinogen as bioink for 3D bioprinting fibrin-based soft
               and hard tissues. Acta Biomater, 117: 60–76.       http://doi:10.1016/j.ijbiomac.2022.01.081
                                                               120. Unagolla JM, Jayasuriya AC, 2020, Hydrogel-based
               http://doi:10.1016/j.actbio.2020.09.024
                                                                  3D bioprinting: A comprehensive review on cell-laden
            110. Zhou Z, Cui J, Wu S,  et al., 2022, Silk fibroin-based   hydrogels, bioink formulations, and future perspectives.
               biomaterials for cartilage/osteochondral repair. Theranostics,   Appl Mater Today, 18: 100479.
               12(11): 5103–5124.
                                                                  http://doi:10.1016/j.apmt.2019.100479
               http://doi:10.7150/thno.74548


            Volume 9 Issue 6 (2023)                        495                          https://doi.org/10.36922/ijb.1089
   498   499   500   501   502   503   504   505   506   507   508