Page 504 - IJB-9-6
P. 504
International Journal of Bioprinting Bioprinting cell-laden protein-based hydrogel
121. Koo Y, Choi E-J, Lee J, et al., 2018, 3D printed cell-laden 132. Zhang YS, Khademhosseini A, 2017, Advances in
collagen and hybrid scaffolds for in vivo articular cartilage engineering hydrogels. Science, 356: eaaf3627.
tissue regeneration. J Ind Eng Chem, 66: 343–355.
http://doi:10.1126/science.aaf3627
http://doi:10.1016/j.jiec.2018.05.049
133. Lee J, Yeo M, Kim W, et al., 2018, Development of a tannic
122. Turnbull G, Clarke J, Picard F, et al., 2018, 3D bioactive acid cross-linking process for obtaining 3D porous cell-
composite scaffolds for bone tissue engineering. Bioact laden collagen structure. Int J Biol Macromol, 110: 497–503.
Mater, 3: 278–314.
http://doi:10.1016/j.ijbiomac.2017.10.105
http://doi:10.1016/j.bioactmat.2017.10.001
134. Ruedinger F, Lavrentieva A, Blume C, et al., 2015, Hydrogels
123. Zhang B, Huang J, Narayan RJ, 2020, Gradient scaffolds for for 3D mammalian cell culture: a starting guide for
osteochondral tissue engineering and regeneration. J Mater laboratory practice. Appl Microbiol Biotechnol, 99: 623–636.
Chem B, 8: 8149–8170.
http://doi:10.1007/s00253-014-6253-y
http://doi:10.1039/D0TB00688B
135. Sang S, Mao X, Cao Y, et al., 2023, 3D bioprinting using
124. Diaz-Gomez L, Kontoyiannis PD, Melchiorri AJ, et al., 2019, synovium-derived MSC-laden photo-cross-linked ECM
Three-dimensional printing of tissue engineering scaffolds bioink for cartilage regeneration. ACS Appl Mater Interfaces,
with horizontal pore and composition gradients. Tissue Eng 15: 8895–8913.
Part C Methods, 25: 411–420.
http://doi:10.1021/acsami.2c19058
http://doi:10.1089/ten.tec.2019.0112
136. Singh YP, Bandyopadhyay A, Mandal BB, 2019, 3D
125. Wang M, Li W, Mille LS, et al., 2022, Digital light processing bioprinting using cross-linker-free silk–gelatin bioink for
based bioprinting with composable gradients. Adv Mater, cartilage tissue engineering. ACS Appl Mater Interfaces, 11:
34: 2107038. 33684–33696.
http://doi:10.1002/adma.202107038 http://doi:10.1021/acsami.9b11644
126. Nicolas J, Magli S, Rabbachin L, et al., 2020, 3D extracellular 137. Kara Özenler A, Distler T, Tihminlioglu F, et al., 2023, Fish
matrix mimics: Fundamental concepts and role of materials scale containing alginate dialdehyde-gelatin bioink for bone
chemistry to influence stem cell fate. Biomacromolecules, 21: tissue engineering. Biofabrication, 15: 025012.
1968–1994.
http://doi:10.1088/1758-5090/acb6b7
http://doi:10.1021/acs.biomac.0c00045
138. Chakraborty J, Fernández-Pérez J, van Kampen KA, et
127. Guvendiren M, Burdick JA, 2012, Stiffening hydrogels to al., 2023, Development of a biomimetic arch-like 3D
probe short- and long-term cellular responses to dynamic bioprinted construct for cartilage regeneration using gelatin
mechanics. Nat Commun, 3: 792. methacryloyl and silk fibroin-gelatin bioinks. Biofabrication,
15: 035009.
http://doi:10.1038/ncomms1792
http://doi:10.1088/1758-5090/acc68f
128. Ji S, Almeida E, Guvendiren M, 2019, 3D bioprinting
of complex channels within cell-laden hydrogels. Acta 139. Chen P, Zheng L, Wang Y, et al., 2019, Desktop-
Biomater 95: 214–224. stereolithography 3D printing of a radially oriented
extracellular matrix/mesenchymal stem cell exosome bioink
http://doi:10.1016/j.actbio.2019.02.038
for osteochondral defect regeneration. Theranostics, 9:
129. Martinez AW, Caves JM, Ravi S, et al., 2014, Effects of 2439–2459.
crosslinking on the mechanical properties, drug release and
cytocompatibility of protein polymers. Acta Biomater, 10: http://doi:10.7150/thno.31017
26–33. 140. Cidonio G, Alcala-Orozco CR, Lim KS, et al., 2019,
Osteogenic and angiogenic tissue formation in high fidelity
http://doi:10.1016/j.actbio.2013.08.029
nanocomposite Laponite-gelatin bioinks. Biofabrication, 11:
130. FitzSimons TM, Anslyn EV, Rosales AM, 2022, Effect of 035027.
pH on the properties of hydrogels cross-linked via dynamic
thia-michael addition bonds. ACS Polym Au, 2: 129–136. http://doi:10.1088/1758-5090/ab19fd
141. Irmak G, Gümüşderelioğlu M, 2020, Photo-activated
http://doi:10.1021/acspolymersau.1c00049
platelet-rich plasma (PRP)-based patient-specific bio-ink
131. Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera for cartilage tissue engineering. Biomed Mater, 15: 065010.
B, et al., 2021, Hydrogels classification according to the
physical or chemical interactions and as stimuli-sensitive http://doi:10.1088/1748-605X/ab9e46
materials. Gels, 7: 182. 142. Bai Z, Guo X-H, Tang C, et al., 2018, Effects of artesunate on
the expressions of insulin-like growth factor-1, osteopontin
http://doi:10.3390/gels7040182
Volume 9 Issue 6 (2023) 496 https://doi.org/10.36922/ijb.1089

