Page 504 - IJB-9-6
P. 504

International Journal of Bioprinting                              Bioprinting cell-laden protein-based hydrogel




            121. Koo Y, Choi E-J, Lee J, et al., 2018, 3D printed cell-laden   132. Zhang  YS,  Khademhosseini  A,  2017,  Advances  in
               collagen and hybrid scaffolds for in vivo articular cartilage   engineering hydrogels. Science, 356: eaaf3627.
               tissue regeneration. J Ind Eng Chem, 66: 343–355.
                                                                  http://doi:10.1126/science.aaf3627
               http://doi:10.1016/j.jiec.2018.05.049
                                                               133. Lee J, Yeo M, Kim W, et al., 2018, Development of a tannic
            122. Turnbull G, Clarke J, Picard F,  et al., 2018, 3D bioactive   acid cross-linking process for obtaining 3D porous cell-
               composite scaffolds for bone tissue engineering.  Bioact   laden collagen structure. Int J Biol Macromol, 110: 497–503.
               Mater, 3: 278–314.
                                                                  http://doi:10.1016/j.ijbiomac.2017.10.105
               http://doi:10.1016/j.bioactmat.2017.10.001
                                                               134. Ruedinger F, Lavrentieva A, Blume C, et al., 2015, Hydrogels
            123. Zhang B, Huang J, Narayan RJ, 2020, Gradient scaffolds for   for 3D mammalian cell culture: a starting guide for
               osteochondral tissue engineering and regeneration. J Mater   laboratory practice. Appl Microbiol Biotechnol, 99: 623–636.
               Chem B, 8: 8149–8170.
                                                                  http://doi:10.1007/s00253-014-6253-y
               http://doi:10.1039/D0TB00688B
                                                               135. Sang S, Mao X, Cao Y,  et al., 2023, 3D bioprinting using
            124. Diaz-Gomez L, Kontoyiannis PD, Melchiorri AJ, et al., 2019,   synovium-derived MSC-laden photo-cross-linked ECM
               Three-dimensional printing of tissue engineering scaffolds   bioink for cartilage regeneration. ACS Appl Mater Interfaces,
               with horizontal pore and composition gradients. Tissue Eng   15: 8895–8913.
               Part C Methods, 25: 411–420.
                                                                  http://doi:10.1021/acsami.2c19058
               http://doi:10.1089/ten.tec.2019.0112
                                                               136. Singh  YP, Bandyopadhyay  A, Mandal  BB, 2019,  3D
            125. Wang M, Li W, Mille LS, et al., 2022, Digital light processing   bioprinting using cross-linker-free silk–gelatin bioink for
               based bioprinting with composable gradients.  Adv Mater,   cartilage tissue engineering. ACS Appl Mater Interfaces, 11:
               34: 2107038.                                       33684–33696.
               http://doi:10.1002/adma.202107038                  http://doi:10.1021/acsami.9b11644
            126. Nicolas J, Magli S, Rabbachin L, et al., 2020, 3D extracellular   137. Kara Özenler A, Distler T, Tihminlioglu F, et al., 2023, Fish
               matrix mimics: Fundamental concepts and role of materials   scale containing alginate dialdehyde-gelatin bioink for bone
               chemistry to influence stem cell fate. Biomacromolecules, 21:   tissue engineering. Biofabrication, 15: 025012.
               1968–1994.
                                                                  http://doi:10.1088/1758-5090/acb6b7
               http://doi:10.1021/acs.biomac.0c00045
                                                               138. Chakraborty  J,  Fernández-Pérez  J,  van  Kampen  KA,  et
            127. Guvendiren M, Burdick JA, 2012, Stiffening hydrogels to   al., 2023, Development of  a biomimetic  arch-like 3D
               probe short- and long-term cellular responses to dynamic   bioprinted construct for cartilage regeneration using gelatin
               mechanics. Nat Commun, 3: 792.                     methacryloyl and silk fibroin-gelatin bioinks. Biofabrication,
                                                                  15: 035009.
               http://doi:10.1038/ncomms1792
                                                                  http://doi:10.1088/1758-5090/acc68f
            128. Ji S, Almeida E, Guvendiren M, 2019, 3D bioprinting
               of complex channels within cell-laden hydrogels.  Acta   139. Chen P, Zheng L, Wang Y,  et al., 2019, Desktop-
               Biomater 95: 214–224.                              stereolithography 3D printing of a radially oriented
                                                                  extracellular matrix/mesenchymal stem cell exosome bioink
               http://doi:10.1016/j.actbio.2019.02.038
                                                                  for osteochondral defect regeneration.  Theranostics, 9:
            129. Martinez AW, Caves JM, Ravi S,  et al., 2014, Effects of   2439–2459.
               crosslinking on the mechanical properties, drug release and
               cytocompatibility of protein polymers.  Acta Biomater, 10:   http://doi:10.7150/thno.31017
               26–33.                                          140. Cidonio G, Alcala-Orozco CR, Lim KS,  et al., 2019,
                                                                  Osteogenic and angiogenic tissue formation in high fidelity
               http://doi:10.1016/j.actbio.2013.08.029
                                                                  nanocomposite Laponite-gelatin bioinks. Biofabrication, 11:
            130. FitzSimons TM, Anslyn EV, Rosales AM, 2022, Effect of   035027.
               pH on the properties of hydrogels cross-linked via dynamic
               thia-michael addition bonds. ACS Polym Au, 2: 129–136.  http://doi:10.1088/1758-5090/ab19fd
                                                               141. Irmak G, Gümüşderelioğlu M, 2020, Photo-activated
               http://doi:10.1021/acspolymersau.1c00049
                                                                  platelet-rich plasma (PRP)-based patient-specific bio-ink
            131. Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera   for cartilage tissue engineering. Biomed Mater, 15: 065010.
               B,  et al., 2021, Hydrogels classification according to the
               physical or chemical interactions and as stimuli-sensitive   http://doi:10.1088/1748-605X/ab9e46
               materials. Gels, 7: 182.                        142. Bai Z, Guo X-H, Tang C, et al., 2018, Effects of artesunate on
                                                                  the expressions of insulin-like growth factor-1, osteopontin
               http://doi:10.3390/gels7040182

            Volume 9 Issue 6 (2023)                        496                          https://doi.org/10.36922/ijb.1089
   499   500   501   502   503   504   505   506   507   508   509