Page 507 - IJB-9-6
P. 507
International Journal of Bioprinting Bioprinting cell-laden protein-based hydrogel
189. Nedunchezian S, Banerjee P, Lee C-Y, et al., 2021, Generating 200. Di Bella C, Duchi S, O’Connell CD, et al., 2018, In situ
adipose stem cell-laden hyaluronic acid-based scaffolds handheld three‐dimensional bioprinting for cartilage
using 3D bioprinting via the double crosslinked strategy for regeneration. J Tissue Eng Regen Med, 12(3): 611–621.
chondrogenesis. Mater Sci Eng C, 124: 112072.
http://doi:10.1002/term.2476
http://doi:10.1016/j.msec.2021.112072
201. Xu T, Gregory C, Molnar P, et al., 2006, Viability and
190. Jiang Y, Zhou J, Feng C, et al., 2020, Rheological behavior, electrophysiology of neural cell structures generated by the
3D printability and the formation of scaffolds with cellulose inkjet printing method. Biomaterials, 27(19): 3580–3588.
nanocrystals/gelatin hydrogels. J Mater Sci, 55(33): http://doi:10.1016/j.biomaterials.2006.01.048
15709–15725.
202. Xu T, Jin J, Gregory C, et al., 2005, Inkjet printing of viable
http://doi:10.1007/s10853-020-05128-x
mammalian cells. Biomaterials, 26(1): 93–99.
191. Bom S, Ribeiro R, Ribeiro HM, et al., 2022, On the progress http://doi:10.1016/j.biomaterials.2004.04.011
of hydrogel-based 3D printing: Correlating rheological
properties with printing behaviour. Int J Pharm, 615: 121506. 203. Brenker JC, Devendran C, Neild A, et al., 2020, On-demand
sample injection: combining acoustic actuation with a tear-
http://doi:10.1016/j.ijpharm.2022.121506
drop shaped nozzle to generate droplets with precise spatial
192. Thattaruparambil Raveendran N, Vaquette C, Meinert C, and temporal control. Lab Chip, 20(2): 253–265.
et al., 2019, Optimization of 3D bioprinting of periodontal http://doi:10.1039/C9LC00837C
ligament cells. Dent Mater, 35(12): 1683–1694.
204. Yang X, Lu Z, Wu H, et al., 2018, Collagen-alginate as bioink
http://doi:10.1016/j.dental.2019.08.114
for three-dimensional (3D) cell printing based cartilage
193. Billiet T, Vandenhaute M, Schelfhout J, et al., 2012, A review tissue engineering. Mater Sci Eng C, 83: 195–201.
of trends and limitations in hydrogel-rapid prototyping for http://doi:10.1016/j.msec.2017.09.002
tissue engineering. Biomaterials, 33(26): 6020–6041.
205. Lim H, Kim HS, Qazi R, et al., 2020, Advanced soft materials,
http://doi:10.1016/j.biomaterials.2012.04.050
sensor integrations, and applications of wearable flexible
194. Nair K, Gandhi M, Khalil S, et al., 2009, Characterization of hybrid electronics in healthcare, energy, and environment.
cell viability during bioprinting processes. Biotechnol J, 4(8): Adv Mater, 32(15): 1901924.
1168–1177.
http://doi:10.1002/adma.201901924
http://doi:10.1002/biot.200900004
206. Slaughter BV, Khurshid SS, Fisher OZ, et al., 2009, Hydrogels
195. Chen DXB, 2019, Extrusion bioprinting of scaffolds, in in regenerative medicine. Adv Mater, 21(32-33): 3307–3329.
Extrusion Bioprinting of Scaffolds for Tissue Engineering http://doi:10.1002/adma.200802106
Applications, Springer International Publishing, Cham, 117–
145. 207. Fedorovich NEE, Alblas J, Hennink WEE, et al., 2011, Organ
printing: The future of bone regeneration? Trends Biotechnol,
http://doi:10.1007/978-3-030-03460-3_6
29(12): 601–606.
196. Daly AC, Freeman FE, Gonzalez-Fernandez T, et al., 2017, http://doi:10.1016/j.tibtech.2011.07.001
3D bioprinting for cartilage and osteochondral tissue
engineering. Adv Healthc Mater, 6(22): 1–20. 208. Aldana AA, Abraham GA, 2017, Current advances in
electrospun gelatin-based scaffolds for tissue engineering
http://doi:10.1002/adhm.201700298
applications. Int J Pharm, 523(2): 441–453.
197. Boularaoui S, Al Hussein G, Khan KA, et al., 2020, An http://doi:10.1016/j.ijpharm.2016.09.044
overview of extrusion-based bioprinting with a focus
on induced shear stress and its effect on cell viability. 209. Kim U-J, Park J, Li C, et al., 2004, Structure and properties of
Bioprinting, 20: e00093. silk hydrogels. Biomacromolecules, 5(3): 786–792.
http://doi:10.1016/j.bprint.2020.e00093 http://doi:10.1021/bm0345460
198. Gu Q, Hao J, Lu Y, et al., 2015, Three-dimensional bio- 210. Gupta S, Alrabaiah H, Christophe M, et al., 2021, Evaluation of
printing. Sci China Life Sci, 58(5): 411–419. silk‐based bioink during pre and post 3D bioprinting: A review.
J Biomed Mater Res Part B Appl Biomater, 109(2): 279–293.
http://doi:10.1007/s11427-015-4850-3
http://doi:10.1002/jbm.b.34699
199. Matai I, Kaur G, Seyedsalehi A, et al., 2020, Progress in
3D bioprinting technology for tissue/organ regenerative 211. Kim YB, Lee H, Kim GH, 2016, Strategy to achieve highly
engineering. Biomaterials, 226: 119536. porous/biocompatible macroscale cell blocks, using a
collagen/genipin-bioink and an optimal 3D printing
http://doi:10.1016/j.biomaterials.2019.119536
process. ACS Appl Mater Interfaces, 8(47): 32230–32240.
Volume 9 Issue 6 (2023) 499 https://doi.org/10.36922/ijb.1089

