Page 507 - IJB-9-6
P. 507

International Journal of Bioprinting                              Bioprinting cell-laden protein-based hydrogel




            189. Nedunchezian S, Banerjee P, Lee C-Y, et al., 2021, Generating   200. Di Bella C, Duchi S, O’Connell CD,  et al., 2018, In situ
               adipose stem cell-laden hyaluronic acid-based scaffolds   handheld three‐dimensional bioprinting for cartilage
               using 3D bioprinting via the double crosslinked strategy for   regeneration. J Tissue Eng Regen Med, 12(3): 611–621.
               chondrogenesis. Mater Sci Eng C, 124: 112072.
                                                                  http://doi:10.1002/term.2476
               http://doi:10.1016/j.msec.2021.112072
                                                               201. Xu T, Gregory C, Molnar P,  et al., 2006, Viability and
            190. Jiang Y, Zhou J, Feng C, et al., 2020, Rheological behavior,   electrophysiology of neural cell structures generated by the
               3D printability and the formation of scaffolds with cellulose   inkjet printing method. Biomaterials, 27(19): 3580–3588.
               nanocrystals/gelatin  hydrogels.  J Mater Sci,  55(33):    http://doi:10.1016/j.biomaterials.2006.01.048
               15709–15725.
                                                               202. Xu T, Jin J, Gregory C, et al., 2005, Inkjet printing of viable
               http://doi:10.1007/s10853-020-05128-x
                                                                  mammalian cells. Biomaterials,  26(1): 93–99.
            191. Bom S, Ribeiro R, Ribeiro HM, et al., 2022, On the progress   http://doi:10.1016/j.biomaterials.2004.04.011
               of hydrogel-based 3D printing: Correlating rheological
               properties with printing behaviour. Int J Pharm, 615: 121506.  203. Brenker JC, Devendran C, Neild A, et al., 2020, On-demand
                                                                  sample injection: combining acoustic actuation with a tear-
               http://doi:10.1016/j.ijpharm.2022.121506
                                                                  drop shaped nozzle to generate droplets with precise spatial
            192. Thattaruparambil Raveendran  N,  Vaquette  C,  Meinert  C,   and temporal control. Lab Chip, 20(2): 253–265.
               et al., 2019, Optimization of 3D bioprinting of periodontal   http://doi:10.1039/C9LC00837C
               ligament cells. Dent Mater, 35(12): 1683–1694.
                                                               204. Yang X, Lu Z, Wu H, et al., 2018, Collagen-alginate as bioink
               http://doi:10.1016/j.dental.2019.08.114
                                                                  for  three-dimensional  (3D) cell printing  based  cartilage
            193. Billiet T, Vandenhaute M, Schelfhout J, et al., 2012, A review   tissue engineering. Mater Sci Eng C, 83: 195–201.
               of trends and limitations in hydrogel-rapid prototyping for   http://doi:10.1016/j.msec.2017.09.002
               tissue engineering. Biomaterials, 33(26): 6020–6041.
                                                               205. Lim H, Kim HS, Qazi R, et al., 2020, Advanced soft materials,
               http://doi:10.1016/j.biomaterials.2012.04.050
                                                                  sensor integrations, and applications of wearable flexible
            194. Nair K, Gandhi M, Khalil S, et al., 2009, Characterization of   hybrid electronics in healthcare, energy, and environment.
               cell viability during bioprinting processes. Biotechnol J, 4(8):   Adv Mater, 32(15): 1901924.
               1168–1177.
                                                                  http://doi:10.1002/adma.201901924
               http://doi:10.1002/biot.200900004
                                                               206. Slaughter BV, Khurshid SS, Fisher OZ, et al., 2009, Hydrogels
            195. Chen DXB, 2019, Extrusion bioprinting of scaffolds, in   in regenerative medicine. Adv Mater, 21(32-33): 3307–3329.
               Extrusion  Bioprinting  of  Scaffolds  for  Tissue  Engineering   http://doi:10.1002/adma.200802106
               Applications, Springer International Publishing, Cham, 117–
               145.                                            207. Fedorovich NEE, Alblas J, Hennink WEE, et al., 2011, Organ
                                                                  printing: The future of bone regeneration? Trends Biotechnol,
               http://doi:10.1007/978-3-030-03460-3_6
                                                                  29(12): 601–606.
            196. Daly AC, Freeman FE, Gonzalez-Fernandez T, et al., 2017,   http://doi:10.1016/j.tibtech.2011.07.001
               3D bioprinting for cartilage and osteochondral tissue
               engineering. Adv Healthc Mater, 6(22): 1–20.    208. Aldana AA, Abraham GA, 2017, Current advances in
                                                                  electrospun  gelatin-based  scaffolds  for  tissue  engineering
               http://doi:10.1002/adhm.201700298
                                                                  applications. Int J Pharm, 523(2): 441–453.
            197. Boularaoui S, Al Hussein G, Khan KA,  et al., 2020, An   http://doi:10.1016/j.ijpharm.2016.09.044
               overview of extrusion-based bioprinting with a focus
               on induced shear stress and its effect on cell viability.   209. Kim U-J, Park J, Li C, et al., 2004, Structure and properties of
               Bioprinting, 20: e00093.                           silk hydrogels. Biomacromolecules, 5(3): 786–792.
               http://doi:10.1016/j.bprint.2020.e00093            http://doi:10.1021/bm0345460
            198. Gu Q, Hao J, Lu Y,  et al., 2015, Three-dimensional bio-  210.  Gupta S, Alrabaiah H, Christophe M, et al., 2021, Evaluation of
               printing. Sci China Life Sci, 58(5): 411–419.      silk‐based bioink during pre and post 3D bioprinting: A review.
                                                                  J Biomed Mater Res Part B Appl Biomater, 109(2): 279–293.
               http://doi:10.1007/s11427-015-4850-3
                                                                  http://doi:10.1002/jbm.b.34699
            199. Matai I, Kaur G, Seyedsalehi A,  et  al., 2020, Progress in
               3D bioprinting technology for tissue/organ regenerative   211. Kim YB, Lee H, Kim GH, 2016, Strategy to achieve highly
               engineering. Biomaterials, 226: 119536.            porous/biocompatible macroscale cell blocks, using a
                                                                  collagen/genipin-bioink and an optimal 3D printing
               http://doi:10.1016/j.biomaterials.2019.119536
                                                                  process. ACS Appl Mater Interfaces, 8(47): 32230–32240.


            Volume 9 Issue 6 (2023)                        499                          https://doi.org/10.36922/ijb.1089
   502   503   504   505   506   507   508   509   510   511   512