Page 508 - IJB-9-6
P. 508

International Journal of Bioprinting                              Bioprinting cell-laden protein-based hydrogel




               http://doi:10.1021/acsami.6b11669               223. Hong H, Seo YB, Kim DY,  et al., 2020, Digital light
                                                                  processing 3D printed silk fibroin hydrogel for cartilage
            212. Chawla S, Midha S, Sharma A, et al., 2018, Silk‐based bioinks
               for 3D bioprinting. Adv Healthc Mater, 7(8): 1701204.  tissue engineering. Biomaterials, 232: 119679.
                                                                  http://doi:10.1016/j.biomaterials.2019.119679
               http://doi:10.1002/adhm.201701204
                                                               224. Rice WL, Firdous S, Gupta S,  et al., 2008, Non-invasive
            213. Kim BS, Das S, Jang J,  et al., 2020, Decellularized
               extracellular matrix-based bioinks for engineering tissue-   characterization of structure and morphology of silk fibroin
               and organ-specific microenvironments. Chem Rev, 120(19):    biomaterials  using  non-linear  microscopy.  Biomaterials,
               10608–10661.                                       29(13): 2015–2024.
                                                                  http://doi:10.1016/j.biomaterials.2007.12.049
               http://doi:10.1021/acs.chemrev.9b00808
                                                               225. Tang S, Richardson BM, Anseth KS, 2021, Dynamic covalent
            214. Bourgine PE, Pippenger BE, Todorov A, et al., 2013, Tissue
               decellularization by activation of programmed cell death.   hydrogels as biomaterials to mimic the viscoelasticity of soft
               Biomaterials, 34(19): 6099–6108.                   tissues. Prog Mater Sci, 120: 100738.
                                                                  http://doi:10.1016/j.pmatsci.2020.100738
               http://doi:10.1016/j.biomaterials.2013.04.058
                                                               226. Lim KS, Galarraga JH, Cui X, et al., 2020, Fundamentals and
            215. Groll J, Boland T, Blunk T,  et al., 2016, Biofabrication:
               Reappraising the definition of an evolving field.   applications of photo-cross-linking in bioprinting.  Chem
               Biofabrication, 8(26): 013001.                     Rev, 120(19):10662–10694.
                                                                  http://doi:10.1021/acs.chemrev.9b00812
               http://doi:10.1088/1758-5090/8/1/013001
                                                               227. Mueller E, Poulin I, Bodnaryk WJ,  et al., 2022, Click
            216. Sarkari S, Khajehmohammadi M, Davari N, et al., 2022, The
               effects  of process  parameters  on  polydopamine  coatings   chemistry hydrogels for extrusion bioprinting: Progress,
                                                                  challenges, and opportunities.  Biomacromolecules, 23(3):
               employed in tissue engineering applications.  Front  Bioeng   619–640.
               Biotechnol, 10: 1005413.
                                                                  http://doi:10.1021/acs.biomac.1c01105
               http://doi:10.3389/fbioe.2022.1005413
                                                               228. Rastin H, Ormsby RT, Atkins GJ, et al., 2020, 3D bioprinting
            217. Hong N, Yang G-H, Lee J, et al., 2018, 3D bioprinting and   of  methylcellulose/gelatin-methacryloyl  (MC/GelMA)
               its in vivo applications.  J Biomed Mater Res Part B Appl   bioink with high shape integrity. ACS Appl Bio Mater, 3(3):
               Biomater, 106(1): 444–459.
                                                                  1815–1826.
               http://doi:10.1002/jbm.b.33826
                                                                  http://doi:10.1021/acsabm.0c00169
            218. Ning L, Gil CJ, Hwang B, et al., 2020, Biomechanical factors
               in three-dimensional tissue bioprinting. Appl Phys Rev, 7(4):   229. GhavamiNejad A, Ashammakhi N, Wu XY,  et al., 2020,
               1–22.                                              Crosslinking strategies for 3D bioprinting of polymeric
                                                                  hydrogels. Small, 16(35): 2002931.
               http://doi:10.1063/5.0023206
                                                                  http://doi:10.1002/smll.202002931
            219. Cui X, Boland T, 2009, Human microvasculature fabrication
               using  thermal  inkjet  printing  technology.  Biomaterials,   230. Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks
               30(31): 6221–6227.                                 for 3D bioprinting: An overview.  Biomater Sci, 6(5):
                                                                  915–946.
               http://doi:10.1016/j.biomaterials.2009.07.056
                                                                  http://doi:10.1039/C7BM00765E
            220. Gao G, Yonezawa T, Hubbell K,  et al., 2015, Inkjet-
               bioprinted acrylated peptides and PEG hydrogel with human   231. Hu W, Wang Z, Xiao Y, et al., 2019, Advances in crosslinking
               mesenchymal stem cells promote robust bone and cartilage   strategies of  biomedical hydrogels.  Biomater Sci, 7(3):
               formation with minimal printhead clogging.  Biotechnol J,   843–855.
               10(10): 1568–1577.                                 http://doi:10.1039/C8BM01246F
               http://doi:10.1002/biot.201400635               232. Lee JM, Suen SKQ, Ng WL,  et al., 2021, Bioprinting of
                                                                  collagen: Considerations, potentials, and applications.
            221. Ihalainen P, Määttänen A, Sandler N, 2015, Printing
               technologies for biomolecule and cell-based applications.   Macromol Biosci, 21(1): 1–18.
               Int J Pharm, 494(2): 585–592.                      http://doi:10.1002/mabi.202000280
               http://doi:10.1016/j.ijpharm.2015.02.033        233. Zennifer A, Subramanian A, Sethuraman S, 2022,
                                                                  Bioprinting design  considerations of  bioinks  for  laser
            222. Pati F, Gantelius J, Svahn HA, 2016, 3D bioprinting of tissue/
               organ models. Angew Chemie Int Ed, 55(15): 4650–4665.  bioprinting  technique  towards  tissue  regenerative
                                                                  applications. Bioprinting, 27: e00205.
               http://doi:10.1002/anie.201505062
                                                                  http://doi:10.1016/j.bprint.2022.e00205


            Volume 9 Issue 6 (2023)                        500                          https://doi.org/10.36922/ijb.1089
   503   504   505   506   507   508   509   510   511   512   513