Page 545 - IJB-9-6
P. 545

International Journal of Bioprinting                  High-performance SrCS scaffolds via vat photopolymerization




            14.  Chen A, Su J, Li Y, et al., 2023, 3D/4D printed bio-  https://doi.org/10.1016/j.bioadv.2022.213261
               piezoelectric smart scaffolds for next-generation bone tissue   25.  Almubarak S, Nethercott H, Freeberg M, et al., 2016, Tissue
               engineering. Int J Extreme Manuf, 5: 032007.
                                                                  engineering strategies for promoting vascularized bone
               https://doi.org/10.1088/2631-7990/acd88f           regeneration. Bone, 83: 197–209.
            15.  Yan C, Ma G, Chen A, et al., 2021, Additive manufacturing   https://doi.org/10.1016/j.bone.2015.11.011
               of hydroxyapatite and its composite materials: A review.    26.  Dashnyam K, El-Fiqi A, Buitrago JO, et al., 2017, A mini
               J Micromech Mol Phys, 05(03).
                                                                  review focused on the proangiogenic role of silicate ions
               https://doi.org/10.1142/s2424913020300029          released from silicon-containing biomaterials. J Tissue Eng,
                                                                  8: 2041731417707339.
            16.  Wang H, Chen P, Wu H, et al., 2022, Comparative evaluation
               of printability and compression properties of poly-ether-  https://doi.org/10.1177/2041731417707339
               ether-ketone triply periodic minimal surface scaffolds   27.  Mao L, Xia L, Chang J, et al., The synergistic effects of Sr
               fabricated by laser powder bed fusion. Addit Manuf, 57.
                                                                  and Si bioactive ions on osteogenesis, osteoclastogenesis
               https://doi.org/10.1016/j.addma.2022.102961        and angiogenesis for osteoporotic bone regeneration. Acta
                                                                  Biomater, 61: 217–232.
            17.  Su R, Chen J, Zhang X,  et al., 2023, 3D-printed micro/
               nano-scaled mechanical metamaterials: Fundamentals,   https://doi.org/10.1016/j.actbio.2017.08.015
               technologies, progress, applications, and challenges. Small,   28.  Shie MY, Chiang WH, Chen IP,  et al., 2017, Synergistic
               19(29): e2206391.
                                                                  acceleration in the osteogenic and angiogenic differentiation
               https://doi.org/10.1002/smll.202206391             of  human  mesenchymal  stem  cells  by  calcium  silicate-
                                                                  graphene composites.  Mater  Sci  Eng  C  Mater  Biol  Appl, 73:
            18.  Feng P, Zhao R, Tang W,  et al., 2023, Structural and
               functional  adaptive  artificial  bone:  Materials,  fabrications,   726–735.
               and properties. Adv Funct Mater, 33(23).           https://doi.org/10.1016/j.msec.2016.12.071
               https://doi.org/10.1002/adfm.202214726          29.  Lin K, Xia L, Li H, et al., 2013, Enhanced osteoporotic bone
                                                                  regeneration by strontium-substituted calcium silicate
            19.  Distefano F, Pasta S, Epasto G, 2023, Titanium lattice
               structures produced via additive manufacturing for a bone   bioactive ceramics. Biomaterials, 34(38): 10028–10042.
               scaffold: A review. J Funct Biomater, 14(3): 125.   https://doi.org/10.1016/j.biomaterials.2013.09.056
               https://doi.org/10.3390/jfb14030125             30.  Xing M, Wang X, Wang E,  et al., 2018, Bone tissue
                                                                  engineering strategy based on the synergistic effects of
            20.  Shuai C, Yang W, Feng P, et al., 2021, Accelerated degradation
               of HAP/PLLA bone scaffold by PGA blending facilitates   silicon and strontium ions. Acta Biomater, 72: 381–395.
               bioactivity and osteoconductivity. Bioact Mater, 6(2): 490–502.   https://doi.org/10.1016/j.actbio.2018.03.051
               https://doi.org/10.1016/j.bioactmat.2020.09.001  31.  Genchi GG, Marino A, Rocca A,  et al., 2016, Barium
                                                                  titanate nanoparticles: promising multitasking vectors in
            21.  Zhou Q, Su X, Wu J, et al., 2023, Additive manufacturing
               of bioceramic implants for restoration bone engineering:   nanomedicine. Nanotechnology, 27(23): 232001.
               Technologies, advances, and future perspectives.  ACS   https://doi.org/10.1088/0957-4484/27/23/232001
               Biomater Sci Eng, 9(3): 1164–1189.
                                                               32.  Dubey AK, Ea A, Balani K,  et  al., 2013, Multifunctional
               https://doi.org/10.1021/acsbiomaterials.2c01164    properties of multistage spark plasma sintered HA-
                                                                  BaTiO3-based piezobiocomposites for bone replacement
            22.  Su J, Hua S, Chen A, et al., 2022, Three-dimensional printing
               of gyroid-structured composite bioceramic scaffolds with   applications. J Am Ceram Soc, 96(12): 3753–3759.
               tuneable degradability. Biomater Adv, 133: 112595.   https://doi.org/10.1111/jace.12566
               https://doi.org/10.1016/j.msec.2021.112595      33.  Tavangar M, Heidari F, Hayati R, et al., 2020, Manufacturing
                                                                  and characterization of mechanical, biological and dielectric
            23.  Wang Y, Chen S, Liang H, et al., 2022, Digital light processing
               (DLP) of nano biphasic calcium phosphate bioceramic for   properties of hydroxyapatite-barium titanate nanocomposite
               making bone tissue engineering scaffolds. Ceram Int, 48(19):   scaffolds. Ceram Int, 46(7): 9086–9095.
               27681–27692.                                       https://doi.org/10.1016/j.ceramint.2019.12.157
               https://doi.org/10.1016/j.ceramint.2022.06.067  34.  Yang L, Mertens R, Ferrucci M,  et al., 2019, Continuous
                                                                  graded Gyroid cellular structures fabricated by selective
            24.  Zhang B, Xing F, Chen L, et al., 2023, DLP fabrication of
               customized porous bioceramics with osteoinduction ability   laser  melting:  Design,  manufacturing  and  mechanical
               for remote isolation bone regeneration. Biomater Adv, 145:   properties. Mat Des, 162: 394–404.
               213261.                                            https://doi.org/10.1016/j.matdes.2018.12.007


            Volume 9 Issue 6 (2023)                        537                          https://doi.org/10.36922/ijb.1233
   540   541   542   543   544   545   546   547   548   549   550