Page 545 - IJB-9-6
P. 545
International Journal of Bioprinting High-performance SrCS scaffolds via vat photopolymerization
14. Chen A, Su J, Li Y, et al., 2023, 3D/4D printed bio- https://doi.org/10.1016/j.bioadv.2022.213261
piezoelectric smart scaffolds for next-generation bone tissue 25. Almubarak S, Nethercott H, Freeberg M, et al., 2016, Tissue
engineering. Int J Extreme Manuf, 5: 032007.
engineering strategies for promoting vascularized bone
https://doi.org/10.1088/2631-7990/acd88f regeneration. Bone, 83: 197–209.
15. Yan C, Ma G, Chen A, et al., 2021, Additive manufacturing https://doi.org/10.1016/j.bone.2015.11.011
of hydroxyapatite and its composite materials: A review. 26. Dashnyam K, El-Fiqi A, Buitrago JO, et al., 2017, A mini
J Micromech Mol Phys, 05(03).
review focused on the proangiogenic role of silicate ions
https://doi.org/10.1142/s2424913020300029 released from silicon-containing biomaterials. J Tissue Eng,
8: 2041731417707339.
16. Wang H, Chen P, Wu H, et al., 2022, Comparative evaluation
of printability and compression properties of poly-ether- https://doi.org/10.1177/2041731417707339
ether-ketone triply periodic minimal surface scaffolds 27. Mao L, Xia L, Chang J, et al., The synergistic effects of Sr
fabricated by laser powder bed fusion. Addit Manuf, 57.
and Si bioactive ions on osteogenesis, osteoclastogenesis
https://doi.org/10.1016/j.addma.2022.102961 and angiogenesis for osteoporotic bone regeneration. Acta
Biomater, 61: 217–232.
17. Su R, Chen J, Zhang X, et al., 2023, 3D-printed micro/
nano-scaled mechanical metamaterials: Fundamentals, https://doi.org/10.1016/j.actbio.2017.08.015
technologies, progress, applications, and challenges. Small, 28. Shie MY, Chiang WH, Chen IP, et al., 2017, Synergistic
19(29): e2206391.
acceleration in the osteogenic and angiogenic differentiation
https://doi.org/10.1002/smll.202206391 of human mesenchymal stem cells by calcium silicate-
graphene composites. Mater Sci Eng C Mater Biol Appl, 73:
18. Feng P, Zhao R, Tang W, et al., 2023, Structural and
functional adaptive artificial bone: Materials, fabrications, 726–735.
and properties. Adv Funct Mater, 33(23). https://doi.org/10.1016/j.msec.2016.12.071
https://doi.org/10.1002/adfm.202214726 29. Lin K, Xia L, Li H, et al., 2013, Enhanced osteoporotic bone
regeneration by strontium-substituted calcium silicate
19. Distefano F, Pasta S, Epasto G, 2023, Titanium lattice
structures produced via additive manufacturing for a bone bioactive ceramics. Biomaterials, 34(38): 10028–10042.
scaffold: A review. J Funct Biomater, 14(3): 125. https://doi.org/10.1016/j.biomaterials.2013.09.056
https://doi.org/10.3390/jfb14030125 30. Xing M, Wang X, Wang E, et al., 2018, Bone tissue
engineering strategy based on the synergistic effects of
20. Shuai C, Yang W, Feng P, et al., 2021, Accelerated degradation
of HAP/PLLA bone scaffold by PGA blending facilitates silicon and strontium ions. Acta Biomater, 72: 381–395.
bioactivity and osteoconductivity. Bioact Mater, 6(2): 490–502. https://doi.org/10.1016/j.actbio.2018.03.051
https://doi.org/10.1016/j.bioactmat.2020.09.001 31. Genchi GG, Marino A, Rocca A, et al., 2016, Barium
titanate nanoparticles: promising multitasking vectors in
21. Zhou Q, Su X, Wu J, et al., 2023, Additive manufacturing
of bioceramic implants for restoration bone engineering: nanomedicine. Nanotechnology, 27(23): 232001.
Technologies, advances, and future perspectives. ACS https://doi.org/10.1088/0957-4484/27/23/232001
Biomater Sci Eng, 9(3): 1164–1189.
32. Dubey AK, Ea A, Balani K, et al., 2013, Multifunctional
https://doi.org/10.1021/acsbiomaterials.2c01164 properties of multistage spark plasma sintered HA-
BaTiO3-based piezobiocomposites for bone replacement
22. Su J, Hua S, Chen A, et al., 2022, Three-dimensional printing
of gyroid-structured composite bioceramic scaffolds with applications. J Am Ceram Soc, 96(12): 3753–3759.
tuneable degradability. Biomater Adv, 133: 112595. https://doi.org/10.1111/jace.12566
https://doi.org/10.1016/j.msec.2021.112595 33. Tavangar M, Heidari F, Hayati R, et al., 2020, Manufacturing
and characterization of mechanical, biological and dielectric
23. Wang Y, Chen S, Liang H, et al., 2022, Digital light processing
(DLP) of nano biphasic calcium phosphate bioceramic for properties of hydroxyapatite-barium titanate nanocomposite
making bone tissue engineering scaffolds. Ceram Int, 48(19): scaffolds. Ceram Int, 46(7): 9086–9095.
27681–27692. https://doi.org/10.1016/j.ceramint.2019.12.157
https://doi.org/10.1016/j.ceramint.2022.06.067 34. Yang L, Mertens R, Ferrucci M, et al., 2019, Continuous
graded Gyroid cellular structures fabricated by selective
24. Zhang B, Xing F, Chen L, et al., 2023, DLP fabrication of
customized porous bioceramics with osteoinduction ability laser melting: Design, manufacturing and mechanical
for remote isolation bone regeneration. Biomater Adv, 145: properties. Mat Des, 162: 394–404.
213261. https://doi.org/10.1016/j.matdes.2018.12.007
Volume 9 Issue 6 (2023) 537 https://doi.org/10.36922/ijb.1233

