Page 80 - IJB-9-6
P. 80
International Journal of Bioprinting 3D Aerosol Jet® printing for microstructuring
Availability of data 10. Park YG, Min H, Kim H, et al., 2019, Three-dimensional,
high-resolution printing of carbon nanotube/liquid metal
Data are available by request to the authors. composites with mechanical and electrical reinforcement.
Nano Lett, 19(8):4866–4872.
Further disclosure
https//doi.org/10.1021/acs.nanolett.9b00150
Parts of the findings have been presented in the 11. Lejeune M, Chartier T, Dossou-Yovo C, et al., 2009, Ink-jet
international conference Additive Manufacturing for a printing of ceramic micro-pillar arrays. J Eur Ceram Soc,
Better World (SUTD, Singapore, August 23–25, 2022). 29(5):905–911.
References https//doi.org/10.1016/j.jeurceramsoc.2008.07.040
12. Jannah F, Kim JH, Lee JW, et al., 2018, Immobilized
1. Xu J, Wang X, Wang C, et al., 2021, A review on micro/ polydiacetylene lipid vesicles on polydimethylsiloxane
nanoforming to fabricate 3D metallic structures. Adv Mater, micropillars as a surfactin-based label-free bacterial sensor
33(6):2000893. platform. Front Mater, 5:57.
https//doi.org/10.1002/adma.202000893 https//doi.org/10.3389/fmats.2018.00057
2. Vaezi M, Seitz H, Yang S, 2013, A review on 3D micro- 13. Cutarelli A, Ghio S, Zasso J, et al., 2020, Vertically-aligned
additive manufacturing technologies. Int J Adv Manuf functionalized silicon micropillars for 3D culture of human
Technol, 67:1721–1754. pluripotent stem cell-derived cortical progenitors. Cells,
3. Yunas J, Mulyanti B, Hamidah I, et al., 2020, Polymer-based 9(1):88.
MEMS electromagnetic actuator for biomedical application: https//doi.org/10.3390/cells9010088
A review. Polymer, 12:1184.
14. Wang X, Yu H, Yang T, et al., 2021, Density regulation and
https://doi.org/10.1007/s00170-012-4605-2 localization of cell clusters by self-assembled femtosecond-
4. Moitzheim S, Put B, Vereecken PM, 2019, Advances in 3D thin- laser-fabricated micropillar arrays. ACS Appl Mater
film Li-ion batteries. Adv Mater Interfaces, 6(15):1900805. Interfaces, 13(49):58261–58269.
https//doi.org/10.1002/admi.201900805 https//doi.org/10.1021/acsami.1c13818
5. Moitzheim S, Balder JE, Ritasalo R, et al., 2019, Toward 3D 15. Fan S, Qi L, Li J, et al., 2021, Guiding the patterned growth of
thin-film batteries: Optimal current-collector design and neuronal axons and dendrites using anisotropic micropillar
scalable fabrication of TiO2 thin-film electrodes. ACS Appl scaffolds. Adv Healthc Mater, 10(12):2100094.
Energy Mater, 2(3):1774–1783. https//doi.org/10.1002/adhm.202100094
https//doi.org/10.1021/acsaem.8b01905 16. Palankar R, Glaubitz M, Martens U, et al., 2016, 3D
6. Kong T, Luo G, Zhao Y, et al., 2019, Bioinspired micropillars guide the mechanobiology of human induced
superwettability micro/nanoarchitectures: Fabrications and pluripotent stem cell-derived cardiomyocytes. Adv Healthc
applications. Adv Funct Mater, 29(11):1808012. Mater, 5(3):335–341.
https//doi.org/10.1002/adfm.201808012 https//doi.org/10.1002/adhm.201500740
7. Penmatsa V, Kim T, Beidaghi M, et al., 2012, Three- 17. Klein F, Richter B, Striebel T, et al., 2011, Two-component
dimensional graphene nanosheet encrusted carbon polymer scaffolds for controlled three-dimensional cell
micropillar arrays for electrochemical sensing. Nanoscale, culture. Adv Mater, 23(11):1341–1345.
4(12):3673–3678. https//doi.org/10.1002/adma.201004060
https//doi.org/10.1039/c2nr30161j 18. Liu Y, McGuire AF, Lou HY, et al., 2018, Soft conductive
8. Lao Z, Xia N, Wang S, et al., 2021, Tethered and untethered 3D micropillar electrode arrays for biologically relevant
microactuators fabricated by two-photon polymerization: A electrophysiological recording. Proc Natl Acad Sci U S A,
review. Micromachines, 12(4):465. 115(46):11718–11723.
https//doi.org/10.3390/mi12040465 https//doi.org/10.1073/pnas.1810827115
9. Qian Y, Magginetti DJ, Jeon S, et al., 2020, Heterogeneous 19. Yadav A, Verma N, 2019, Efficient hydrogen production
optoelectronic characteristics of Si micropillar arrays using Ni-graphene oxide-dispersed laser-engraved 3D
fabricated by metal-assisted chemical etching. Sci Rep, carbon micropillars as electrodes for microbial electrolytic
10(1):1–10. cell. Renew Energy, 138:628–638.
https//doi.org/10.1038/s41598-020-73445-x https//doi.org/10.1016/j.renene.2019.01.100
Volume 9 Issue 6 (2023) 72 https://doi.org/10.36922/ijb.0257

