Page 80 - IJB-9-6
P. 80

International Journal of Bioprinting                              3D Aerosol Jet® printing for microstructuring



            Availability of data                               10.  Park YG, Min H, Kim H, et al., 2019, Three-dimensional,
                                                                  high-resolution  printing  of  carbon  nanotube/liquid  metal
            Data are available by request to the authors.         composites with mechanical and electrical reinforcement.
                                                                  Nano Lett, 19(8):4866–4872.
            Further disclosure
                                                                  https//doi.org/10.1021/acs.nanolett.9b00150
            Parts of the findings have been presented in the   11.  Lejeune M, Chartier T, Dossou-Yovo C, et al., 2009, Ink-jet
            international  conference  Additive  Manufacturing  for  a   printing of ceramic micro-pillar arrays.  J  Eur  Ceram  Soc,
            Better World (SUTD, Singapore, August 23–25, 2022).   29(5):905–911.

            References                                            https//doi.org/10.1016/j.jeurceramsoc.2008.07.040
                                                               12.  Jannah F, Kim JH, Lee JW, et al., 2018, Immobilized
            1.   Xu J, Wang  X, Wang C, et  al., 2021, A  review on  micro/  polydiacetylene lipid vesicles on polydimethylsiloxane
               nanoforming to fabricate 3D metallic structures. Adv Mater,   micropillars as a surfactin-based label-free bacterial sensor
               33(6):2000893.                                     platform. Front Mater, 5:57.

               https//doi.org/10.1002/adma.202000893              https//doi.org/10.3389/fmats.2018.00057
            2.   Vaezi M, Seitz H, Yang S, 2013, A review on 3D micro-  13.  Cutarelli A, Ghio S, Zasso J, et al., 2020, Vertically-aligned
               additive manufacturing technologies.  Int J Adv Manuf   functionalized silicon micropillars for 3D culture of human
               Technol, 67:1721–1754.                             pluripotent stem cell-derived cortical progenitors.  Cells,
            3.   Yunas J, Mulyanti B, Hamidah I, et al., 2020, Polymer-based   9(1):88.
               MEMS electromagnetic actuator for biomedical application:   https//doi.org/10.3390/cells9010088
               A review. Polymer, 12:1184.
                                                               14.  Wang X, Yu H, Yang T, et al., 2021, Density regulation and
               https://doi.org/10.1007/s00170-012-4605-2          localization of cell clusters by self-assembled femtosecond-
            4.   Moitzheim S, Put B, Vereecken PM, 2019, Advances in 3D thin-  laser-fabricated micropillar arrays.  ACS Appl Mater
               film Li-ion batteries. Adv Mater Interfaces, 6(15):1900805.  Interfaces, 13(49):58261–58269.
               https//doi.org/10.1002/admi.201900805              https//doi.org/10.1021/acsami.1c13818
            5.   Moitzheim S, Balder JE, Ritasalo R, et al., 2019, Toward 3D   15.  Fan S, Qi L, Li J, et al., 2021, Guiding the patterned growth of
               thin-film batteries: Optimal current-collector design and   neuronal axons and dendrites using anisotropic micropillar
               scalable fabrication of TiO2 thin-film electrodes. ACS Appl   scaffolds. Adv Healthc Mater, 10(12):2100094.
               Energy Mater, 2(3):1774–1783.                      https//doi.org/10.1002/adhm.202100094
               https//doi.org/10.1021/acsaem.8b01905           16.  Palankar R, Glaubitz M, Martens U, et al., 2016, 3D

            6.   Kong  T,  Luo  G,  Zhao  Y,  et  al.,  2019,  Bioinspired   micropillars guide the mechanobiology of human induced
               superwettability micro/nanoarchitectures: Fabrications and   pluripotent stem cell-derived cardiomyocytes. Adv Healthc
               applications. Adv Funct Mater, 29(11):1808012.     Mater, 5(3):335–341.

               https//doi.org/10.1002/adfm.201808012              https//doi.org/10.1002/adhm.201500740
            7.   Penmatsa V, Kim T, Beidaghi M, et al., 2012, Three-  17.  Klein F, Richter B, Striebel T, et al., 2011, Two-component
               dimensional graphene nanosheet encrusted carbon    polymer scaffolds for controlled three-dimensional cell
               micropillar arrays for electrochemical sensing.  Nanoscale,   culture. Adv Mater, 23(11):1341–1345.
               4(12):3673–3678.                                   https//doi.org/10.1002/adma.201004060
               https//doi.org/10.1039/c2nr30161j               18.  Liu Y, McGuire AF, Lou HY, et al., 2018, Soft conductive
            8.   Lao Z, Xia N, Wang S, et al., 2021, Tethered and untethered 3D   micropillar  electrode  arrays  for  biologically  relevant
               microactuators fabricated by two-photon polymerization: A   electrophysiological recording.  Proc Natl Acad Sci U S A,
               review. Micromachines, 12(4):465.                  115(46):11718–11723.
               https//doi.org/10.3390/mi12040465                  https//doi.org/10.1073/pnas.1810827115
            9.   Qian Y, Magginetti DJ, Jeon S, et al., 2020, Heterogeneous   19.  Yadav A, Verma N, 2019, Efficient hydrogen production
               optoelectronic characteristics of Si micropillar arrays   using Ni-graphene oxide-dispersed laser-engraved 3D
               fabricated by metal-assisted chemical etching.  Sci  Rep,   carbon micropillars as electrodes for microbial electrolytic
               10(1):1–10.                                        cell. Renew Energy, 138:628–638.
               https//doi.org/10.1038/s41598-020-73445-x          https//doi.org/10.1016/j.renene.2019.01.100


            Volume 9 Issue 6 (2023)                         72                        https://doi.org/10.36922/ijb.0257
   75   76   77   78   79   80   81   82   83   84   85