Page 81 - IJB-9-6
P. 81

International Journal of Bioprinting                              3D Aerosol Jet® printing for microstructuring



            20.  Goh GL, Zhang H, Chong TH, et al., 2021, 3D printing of   31.  Di Novo NG, Cantù E, Tonello S, et al., 2019, Support-
               multilayered and multimaterial electronics: A review. Adv   material-free microfluidics on an electrochemical sensors
               Electron Mater, 7(10):2100445.                     platform by aerosol jet printing. Sensors, 19(8).
               https//doi.org/10.1002/aelm.202100445              https//doi.org/10.3390/s19081842
            21.  Tan HW, Choong YYC, Kuo CN, et al., 2022, 3D printed   32.  Vlnieska V,  Gilshtein E,  Kunka  D, et  al.,  2022, Aerosol
               electronics: Processes, materials and future trends.  Prog   jet printing of 3D pillar arrays from photopolymer ink.
               Mater Sci, 127:100945.                             Polymers, 14(16):3411.
               https//doi.org/10.1016/j.pmatsci.2022.100945       https//doi.org/10.3390/polym14163411
            22.  Cooper C, Hughes B, 2020, Aerosol jet printing of   33.  Secor EB, 2018, Principles of aerosol jet printing. Flex Print
               electronics: An enabling technology for wearable devices.   Electron, 3(3).
               Pan Pac Microelectron Symp, 1–11.
                                                                  https//doi.org/10.1088/2058-8585/aace28
               https//doi.org/10.23919/PanPacific48324.2020.9059444
                                                               34.  Wilkinson NJ, Smith MAA, Kay RW, et al., 2019, A review
            23.  Machiels J, Verma A, Appeltans R, et al., 2021, Printed   of aerosol jet printing—A non-traditional hybrid process for
               electronics (PE) as an enabling technology to realize flexible   micro-manufacturing. Int J Adv Manuf Technol, 1–21.
               mass customized smart applications. Proc CIRP, 96:115–120.
                                                                  https//doi.org/10.1007/s00170-019-03438-2
               https//doi.org/10.1016/j.procir.2021.01.062
                                                               35.  Williams BA, Trejo ND, Wu A, et al., 2017, Copper–zinc–
            24.  Goh GL, Dikshit V, Koneru R, et al., 2022, Fabrication   tin–sulfide thin films via annealing of ultrasonic spray
               of  design-optimized  multifunctional  safety  cage  with   deposited nanocrystal coatings. ACS Appl Mater Interfaces,
               conformal circuits for drone using hybrid 3D printing   9(22):18865–18871.
               technology. Int J Adv Manuf Technol, 120(3–4):2573–2586.
                                                                  https//doi.org/10.1021/acsami.7b04414
               https//doi.org/10.1007/s00170-022-08831-y
                                                               36.  Gibney R, Ferraris E, 2021, Bioprinting of collagen type I
            25.  Paulsen JA, Renn M, Christenson K, et al., 2012, Printing   and II via aerosol jet printing for the replication of dense
               conformal  electronics  on  3D  structures  with  aerosol  jet   collagenous tissues. Front Bioeng Biotechnol, 9:1–12.
               technology, in  Future of Instrumentation International
               Workshop (FIIW) Proceedings, IEEE, 1–4.            https//doi.org/10.3389/fbioe.2021.786945
               https//doi.org/10.1109/FIIW.2012.6378343        37.  Seiti M, Ginestra P, Ferraro RM, et al., 2020, Nebulized jet-
                                                                  based printing of bio-electrical scaffolds for neural tissue
            26.  Seiti M, Ginestra PS, Ferraro RM, et al., 2022, Aerosol
               Jet®  printing  of  poly(3,4-ethylenedioxythiophene):  engineering: A feasibility study. Biofabrication, 12(2):025024.
               Poly(styrenesulfonate) onto micropatterned substrates for   https//doi.org/10.1088/1758-5090/ab71e0
               neural cells in vitro stimulation. Int J Bioprint, 8(1):504.
                                                               38.  Johnston HJ, Hutchison G, Christensen FM, et al., 2010, A
               https//doi.org/10.18063/ijb.v8i1.504               review of the in vivo and in vitro toxicity of silver and gold
            27.  Williams NX, Watson N, Joh DY, et al., 2020, Aerosol   particulates: Particle attributes and biological mechanisms
               jet printing of biological inks by ultrasonic delivery.   responsible  for  the observed toxicity.  Crit Rev Toxicol,
               Biofabrication, 12(2):025004.                      40(4):328–346.
               https//doi.org/10.1088/1758-5090/ab5cf5            https//doi.org/10.3109/10408440903453074
            28.  Saleh  MS,  Hu  C,  Panat  R,  2017,  Three-dimensional   39.  Ali E, Ferraro RM, Lanzi G, et al., 2020, Generation of
               microarchitected materials and devices using nanoparticle   induced pluripotent stem cell (iPSC) lines from a Joubert
               assembly  by  pointwise  spatial  printing.  Sci Adv,   syndrome patient with compound heterozygous mutations
               3(3):e1601986.                                     in C5orf42 gene. Stem Cell Res, 49:102007.
               https//doi.org/10.1126/sciadv.1601986              https//doi.org/10.1016/j.scr.2020.102007
            29.  Zips S, Grob L, Rinklin P, et al., 2019, Fully printed   40.  Ferraro RM, Ginestra PS, Giliani S, et al., 2020, Carbonization
               μ-needle electrode array from conductive polymer ink   of polymer precursors substrates to direct human iPSC-
               for bioelectronic applications.  ACS Appl  Mater  Interfaces,   derived neurons differentiation and maturation. Proc CIRP,
               11(36):32778–32786.                                39–44.
               https//doi.org/10.1021/acsami.9b11774              https//doi.org/10.1016/j.procir.2020.05.116
            30.  Hohnholz A, Obata K, Nakajima Y, et al., 2019, Hybrid UV   41.  Degryse O, Bloemen V, Ferraris E, 2022, Collagen composite
               laser direct writing of UV-curable PDMS thin film using   inks  for  Aerosol  Jet®  printing  in  bone  tissue  engineering
               aerosol jet printing. Appl Phys A Mater Sci Process, 125(2):1–6.  applications. Proc CIRP, 110(C):180–185.
               https//doi.org/10.1007/s00339-018-1902-0           https//doi.org/10.1016/j.procir.2022.06.033


            Volume 9 Issue 6 (2023)                         73                        https://doi.org/10.36922/ijb.0257
   76   77   78   79   80   81   82   83   84   85   86