Page 21 - v11i4
P. 21

International Journal of Bioprinting                             3D-printed scaffolds for osteochondral defect




            Table 2. Continued...

             Scaffold design  Strategy  Seed cell   Manufacturing   Mechanical properties    In vivo   Reference
                                                    method                                   model
             Cartilage: SF  Biochemical  Cell-free  UV crosslinking   CM: 120 kPa (GelMA)    Rat        52
             Osseous: PEGT/PBT  (TGF-β1             + peptide   TGF-β1 binding peptides reduce the CM.
             mesh + porous silk  binding)           grafting
             Upper: PGS-CS  Biochemical  Cell-free  Extrusion-based   Reduced modulus:       Rat        53
             Bottom: Gelatin  (dECM +               printing    6.3 ± 0.4 MPa (bilayer hydrogel-exosome),
                            exosome)                            5.7 ± 0.3 MPa (bilayer hydrogel)

             Cartilage: TPU +   Biochemical  eUCB-MSC  High-throughput  CM: approximately 2 MPa of PEGT-PBT   N/A  54
             Gel-Alg        (thiolated              microfluidics-  scaffold
             Osseous: PLA + HAp  heparin /          based fabrication
                            strontium
                            nanoparticle)
             Cartilage: GelMA   Biochemical  Cell-free  Sequential   CM: 190 ± 15 kPa (cartilage), 210 ± 20   Rat  55
             + KGN (high    (KGN)                   bioprinting   kPa (osseous).
             concentration)                                     Interfacial shear strength: 40 kPa.
             Osseous: GelMA
             + KGN (low
             concentration)
             Cartilage: GelMA +   Biochemical  Murine   DLP     CM increased with the incorporation of   N/A  56
             DCM            (dECM)     osteoblast/              dECM (data not specified)
             Osseous: GelMA +          chondrogenic
             DBM                       cell precursors
             Cartilage: GelMA   Biochemical  Cell-free  Extrusion-based   CM: 48.99 ± 15.67 kPa (3% β-TCP-  Rabbit  57
             + BP + hUMSCs   (phosphate)            printing    GelMA).
             exosome                                            YM: 232.86 ± 12.45 kPa (1% β-TCP),
             Osseous: GelMA                                     306.17 ± 17.82 kPa (3% β-TCP )
             + BP + hUMSCs
             exosome + β-TCP
             Cartilage: PEGDA   Structural  Cell-free  SLA/     S: 1 MPa (cartilage), 7 MPa (osseous)  N/A  58
             (1MPa)         (geometry/              DLP         Porosity: cartilage 81% (cartilage), 68%
             Osseous: PEGDA   porosity)                         (osseous)
             (7MPa),                                            CM: 11.8 MPa
             Bi-phasic: Infill   Structural  C28/I2 hChon  Concurrent   CM                   N/A        59
             density 45% and 60%  (infill density)  printing + FDM  397.24 ± 41.51 MPa (bi-phasic, 45%);
             Tri-phasic: Infill                                 213.75 ± 32.17 MPa (bi-phasic, 60%);
             density 30%, 45%                                   397.24 ± 41.51 MPa (bi-phasic, total);
             and 60%                                            228.98 ± 40.84 MPa (tri-phasic, 30%);
             Gradient: Infill                                   140.56 ± 21.73 MPa (tri-phasic, 45%);
             density from 30%                                   118.99 ± 29.13 MPa (tri-phasic, 60%);
             to 60%; smooth                                     228.98 ± 40.84 MPa (tri-phasic, total).
             transition in 7 layers                             Gradient:177.98 ± 44.78 MPa (total)
             4 layers PCL scaffold  Structural  BMSCs  FDM      Pore size of four layers: 150, 350, 550, and   Rabbit  60
             with different pore   (pore size)                  750 μm
             sizes infilled with
             cell-laden hydrogel


                                                                                                  (Continued....)











            Volume 11 Issue 4 (2025)                        13                            doi: 10.36922/IJB025120100
   16   17   18   19   20   21   22   23   24   25   26