Page 32 - v11i4
P. 32

International Journal of Bioprinting                             3D-printed scaffolds for osteochondral defect




            30.  Quinn TM, Häuselmann HJ, Shintani N, Hunziker EB. Cell   and  tough  biomimetic  scaffolds.  Biomacromolecules.
               and matrix morphology in articular cartilage from adult   2022;23(3):877-888.
               human knee and ankle joints suggests depth-associated      doi: 10.1021/acs.biomac.1c01330
               adaptations to biomechanical and anatomical roles.   42.  Zhang X, Liu Y, Zuo Q, et al. 3D bioprinting of biomimetic
               Osteoarthritis Cartilage.  2013;21(12):1904-1912.
                                                                  bilayered scaffold consisting of decellularized extracellular
            31.  Niu  H,  Liu  C, Li A,  et  al. Relationship  between  triphasic   matrix  and  silk  fibroin  for  osteochondral  repair.  Int J
               mechanical properties of articular cartilage and   Bioprint. 2021;7(4):401.
               osteoarthritic grade. Sci China Life Sci. 2012;55(5):444-451.     doi: 10.18063/ijb.v7i4.401
               doi: 10.1007/s11427-012-4326-7
                                                               43.  Nedrelow DS, Rassi A, Ajeeb B, et al. Regenerative
            32.  Sun Y, Zhang K, Dong  H, et al. Layered mechanical and   engineering of a biphasic patient-fitted temporomandibular
               electrical properties of porcine articular cartilage. Med Biol   joint condylar prosthesis.  Tissue Eng Part C Methods.
               Eng Comput. 2022;60(10):3019-3028.                 2023;29(7):307-320.
               doi: 10.1007/s11517-022-02653-6                    doi: 10.1089/ten.TEC.2023.0093
            33.  Burr DB, Gallant MA. Bone remodelling in osteoarthritis.   44.  Wu Z, Yao H, Sun H, et al. Enhanced hyaline cartilage
               Nat Rev Rheumatol.  2012;8(11):665-673.            formation and continuous osteochondral regeneration via
               doi: 10.1038/nrrheum.2012.130                      3D-Printed heterogeneous hydrogel with multi-crosslinking
            34.  Flachsmann ER, Broom ND, Oloyede A. A biomechanical   inks. Mater Today Bio. 2024;26:101080.
               investigation of unconstrained shear failure of the      doi: 10.1016/j.mtbio.2024.101080
               osteochondral region under impact loading. Clin Biomech   45.  Diloksumpan P, de Ruijter M, Castilho M, et al. Combining
               (Bristol). 1995;10(3):156-165.                     multi-scale 3D printing technologies to engineer
               doi: 10.1016/0268-0033(95)93706-y                  reinforced hydrogel-ceramic interfaces.  Biofabrication.
            35.  Madry H, van Dijk CN, Mueller-Gerbl M. The basic science   2020;12(2):025014.
               of the subchondral bone.  Knee Surg Sports Traumatol      doi: 10.1088/1758-5090/ab69d9
               Arthrosc. 2010;18(4):419-433.                   46.  Liu Y, Peng L, Li L, et al. 3D-bioprinted BMSC-laden
               doi: 10.1007/s00167-010-1054-z                     biomimetic multiphasic scaffolds for efficient repair of
            36.  Broom ND, Oloyede A, Flachsmann R, Hows M.       osteochondral  defects  in  an osteoarthritic  rat  model.
               Dynamic fracture characteristics of the osteochondral   Biomaterials. 2021;279:121216.
               junction undergoing shear deformation.  Med Eng Phys.      doi: 10.1016/j.biomaterials.2021.121216
               1996;18(5):396-404.                             47.  Gao J, Ding X, Yu X, et al. Cell-free bilayered porous scaffolds
               doi: 10.1016/1350-4533(95)00067-4                  for osteochondral regeneration fabricated by continuous
            37.  Mieloch AA, Richter M, Trzeciak T, Giersig M, Rybka JD.   3d-printing using nascent physical hydrogel as ink.  Adv
               Osteoarthritis severely decreases the elasticity and hardness   Healthc Mater. 2021;10(3):e2001404.
               of knee joint cartilage: a nanoindentation study. J Clin Med.      doi: 10.1002/adhm.202001404
               2019;8(11):1865.                                48.  Wang Z, Cao W, Wu F, et al. A triphasic biomimetic BMSC-
               doi: 10.3390/jcm8111865                            loaded scaffold for osteochondral integrated regeneration in
            38.  Davis S, Zekonyte J, Karali A, Roldo M, Blunn G. Early   rabbits and pigs. Biomater Sci. 2023;11(8):2924-2934.
               degenerative changes in a spontaneous osteoarthritis      doi: 10.1039/d2bm02148j
               model assessed by nanoindentation. Bioengineering (Basel).   49.  Braxton T, Lim K, Alcala-Orozco C, et al. Mechanical and
               2023;10(9):995.                                    physical characterization of a biphasic 3D printed silk-
               doi: 10.3390/bioengineering10090995                infilled scaffold for osteochondral tissue engineering. ACS
            39.  Peters AE, Akhtar R, Comerford EJ, Bates KT. The effect   Biomater Sci Eng. 2024;10(12):7606-7618.
               of ageing and osteoarthritis on the mechanical properties      doi: 10.1021/acsbiomaterials.4c01865
               of cartilage and bone in the human knee joint.  Sci Rep.   50.  Wang S, Luo B, Bai B, et al. 3D printed chondrogenic
               2018;8(1):5931.                                    functionalized PGS bioactive scaffold for cartilage
               doi: 10.1038/s41598-018-24258-6                    regeneration.   Adv  Healthc  Mater.  2023;12(27):
            40.  Hu YJ, Yu YE, Cooper HJ, et al. Mechanical and structural   e2301006.
               properties of articular cartilage and subchondral bone      doi: 10.1002/adhm.202301006
               in human osteoarthritic knees.  J Bone Miner Res.   51.  Wang H, Zhang J, Bai H, et al. 3D printed cell-free bilayer
               2024;39(8):1120-1131.                              porous  scaffold  based on alginate  with  biomimetic
               doi: 10.1093/jbmr/zjae094                          microenvironment for osteochondral defect repair. Biomater
            41.  Guo J, Li Q, Zhang R, et al. Loose pre-cross-linking   Adv. 2025;167:214092.
               mediating cellulose self-assembly for 3D printing strong      doi: 10.1016/j.bioadv.2024.214092

            Volume 11 Issue 4 (2025)                        24                            doi: 10.36922/IJB025120100
   27   28   29   30   31   32   33   34   35   36   37