Page 32 - v11i4
P. 32
International Journal of Bioprinting 3D-printed scaffolds for osteochondral defect
30. Quinn TM, Häuselmann HJ, Shintani N, Hunziker EB. Cell and tough biomimetic scaffolds. Biomacromolecules.
and matrix morphology in articular cartilage from adult 2022;23(3):877-888.
human knee and ankle joints suggests depth-associated doi: 10.1021/acs.biomac.1c01330
adaptations to biomechanical and anatomical roles. 42. Zhang X, Liu Y, Zuo Q, et al. 3D bioprinting of biomimetic
Osteoarthritis Cartilage. 2013;21(12):1904-1912.
bilayered scaffold consisting of decellularized extracellular
31. Niu H, Liu C, Li A, et al. Relationship between triphasic matrix and silk fibroin for osteochondral repair. Int J
mechanical properties of articular cartilage and Bioprint. 2021;7(4):401.
osteoarthritic grade. Sci China Life Sci. 2012;55(5):444-451. doi: 10.18063/ijb.v7i4.401
doi: 10.1007/s11427-012-4326-7
43. Nedrelow DS, Rassi A, Ajeeb B, et al. Regenerative
32. Sun Y, Zhang K, Dong H, et al. Layered mechanical and engineering of a biphasic patient-fitted temporomandibular
electrical properties of porcine articular cartilage. Med Biol joint condylar prosthesis. Tissue Eng Part C Methods.
Eng Comput. 2022;60(10):3019-3028. 2023;29(7):307-320.
doi: 10.1007/s11517-022-02653-6 doi: 10.1089/ten.TEC.2023.0093
33. Burr DB, Gallant MA. Bone remodelling in osteoarthritis. 44. Wu Z, Yao H, Sun H, et al. Enhanced hyaline cartilage
Nat Rev Rheumatol. 2012;8(11):665-673. formation and continuous osteochondral regeneration via
doi: 10.1038/nrrheum.2012.130 3D-Printed heterogeneous hydrogel with multi-crosslinking
34. Flachsmann ER, Broom ND, Oloyede A. A biomechanical inks. Mater Today Bio. 2024;26:101080.
investigation of unconstrained shear failure of the doi: 10.1016/j.mtbio.2024.101080
osteochondral region under impact loading. Clin Biomech 45. Diloksumpan P, de Ruijter M, Castilho M, et al. Combining
(Bristol). 1995;10(3):156-165. multi-scale 3D printing technologies to engineer
doi: 10.1016/0268-0033(95)93706-y reinforced hydrogel-ceramic interfaces. Biofabrication.
35. Madry H, van Dijk CN, Mueller-Gerbl M. The basic science 2020;12(2):025014.
of the subchondral bone. Knee Surg Sports Traumatol doi: 10.1088/1758-5090/ab69d9
Arthrosc. 2010;18(4):419-433. 46. Liu Y, Peng L, Li L, et al. 3D-bioprinted BMSC-laden
doi: 10.1007/s00167-010-1054-z biomimetic multiphasic scaffolds for efficient repair of
36. Broom ND, Oloyede A, Flachsmann R, Hows M. osteochondral defects in an osteoarthritic rat model.
Dynamic fracture characteristics of the osteochondral Biomaterials. 2021;279:121216.
junction undergoing shear deformation. Med Eng Phys. doi: 10.1016/j.biomaterials.2021.121216
1996;18(5):396-404. 47. Gao J, Ding X, Yu X, et al. Cell-free bilayered porous scaffolds
doi: 10.1016/1350-4533(95)00067-4 for osteochondral regeneration fabricated by continuous
37. Mieloch AA, Richter M, Trzeciak T, Giersig M, Rybka JD. 3d-printing using nascent physical hydrogel as ink. Adv
Osteoarthritis severely decreases the elasticity and hardness Healthc Mater. 2021;10(3):e2001404.
of knee joint cartilage: a nanoindentation study. J Clin Med. doi: 10.1002/adhm.202001404
2019;8(11):1865. 48. Wang Z, Cao W, Wu F, et al. A triphasic biomimetic BMSC-
doi: 10.3390/jcm8111865 loaded scaffold for osteochondral integrated regeneration in
38. Davis S, Zekonyte J, Karali A, Roldo M, Blunn G. Early rabbits and pigs. Biomater Sci. 2023;11(8):2924-2934.
degenerative changes in a spontaneous osteoarthritis doi: 10.1039/d2bm02148j
model assessed by nanoindentation. Bioengineering (Basel). 49. Braxton T, Lim K, Alcala-Orozco C, et al. Mechanical and
2023;10(9):995. physical characterization of a biphasic 3D printed silk-
doi: 10.3390/bioengineering10090995 infilled scaffold for osteochondral tissue engineering. ACS
39. Peters AE, Akhtar R, Comerford EJ, Bates KT. The effect Biomater Sci Eng. 2024;10(12):7606-7618.
of ageing and osteoarthritis on the mechanical properties doi: 10.1021/acsbiomaterials.4c01865
of cartilage and bone in the human knee joint. Sci Rep. 50. Wang S, Luo B, Bai B, et al. 3D printed chondrogenic
2018;8(1):5931. functionalized PGS bioactive scaffold for cartilage
doi: 10.1038/s41598-018-24258-6 regeneration. Adv Healthc Mater. 2023;12(27):
40. Hu YJ, Yu YE, Cooper HJ, et al. Mechanical and structural e2301006.
properties of articular cartilage and subchondral bone doi: 10.1002/adhm.202301006
in human osteoarthritic knees. J Bone Miner Res. 51. Wang H, Zhang J, Bai H, et al. 3D printed cell-free bilayer
2024;39(8):1120-1131. porous scaffold based on alginate with biomimetic
doi: 10.1093/jbmr/zjae094 microenvironment for osteochondral defect repair. Biomater
41. Guo J, Li Q, Zhang R, et al. Loose pre-cross-linking Adv. 2025;167:214092.
mediating cellulose self-assembly for 3D printing strong doi: 10.1016/j.bioadv.2024.214092
Volume 11 Issue 4 (2025) 24 doi: 10.36922/IJB025120100