Page 33 - v11i4
P. 33

International Journal of Bioprinting                             3D-printed scaffolds for osteochondral defect




            52.  Ding X, Gao J, Yu X, et al. 3D-printed porous scaffolds of   in a spatially defined manner inside osteochondral tissue
               hydrogels modified with TGF-β1 binding peptides to promote   substitutes. Biofabrication. 2022;14(1):014108.
               in vivo cartilage regeneration and animal gait restoration.      doi: 10.1088/1758-5090/ac457b
               ACS Appl Mater Interfaces. 2022;14(14):15982-15995.
               doi: 10.1021/acsami.2c00761                     63.  Zhang Y, Li D, Liu Y, et al. 3D-bioprinted anisotropic
                                                                  bicellular living hydrogels boost osteochondral regeneration
            53.  Li Q, Yu H, Zhao F, et al. 3D printing of microenvironment-  via reconstruction of cartilage-bone interface.  Innovation
               specific bioinspired and exosome-reinforced hydrogel   (Camb).  2024;5(1):100542.
               scaffolds for efficient cartilage and subchondral bone      doi: 10.1016/j.xinn.2023.100542
               regeneration. Adv Sci (Weinh). 2023;10(26):e2303650.
               doi: 10.1002/advs.202303650                     64.  Maherani M, Eslami H, Poursamar SA, Ansari M. A
                                                                  modular approach to 3D-printed bilayer composite scaffolds
            54.  Cui  X,  Alcala-Orozco  CR,  Baer  K,  et  al.  3D  bioassembly   for osteochondral tissue engineering. J Mater Sci Mater Med.
               of cell-instructive chondrogenic and osteogenic hydrogel   2024;35(1):62.
               microspheres  containing allogeneic stem  cells for  hybrid      doi: 10.1007/s10856-024-06824-9
               biofabrication of osteochondral constructs.  Biofabrication.
               2022;14(3):034101.                              65.  O’Shea  DG,  Hodgkinson  T,  Curtin  CM,  O’Brien  FJ.  An
               doi: 10.1088/1758-5090/ac61a3                      injectable and 3D printable pro-chondrogenic hyaluronic
                                                                  acid and collagen type II composite hydrogel for the repair of
            55.  Wei W, Liu W, Kang H, et al. A one-stone-two-birds strategy   articular cartilage defects. Biofabrication. 2023;16(1):015007.
               for osteochondral regeneration based on a 3D printable      doi: 10.1088/1758-5090/ad047a
               biomimetic scaffold with kartogenin biochemical stimuli
               gradient. Adv Healthc Mater. 2023;12(15):e2300108.  66.  Zineh BR, Roshangar L, Meshgi S, Shabgard M. 3D printing
               doi: 10.1002/adhm.202300108                        of alginate/thymoquinone/halloysite nanotube bio-scaffolds
                                                                  for cartilage repairs: experimental and numerical study. Med
            56.  Coyle A, Chakraborty A, Huang J, Shamiya Y, Luo W,   Biol Eng Comput. 2022;60(11):3069-3080.
               Paul  A.  In  vitro  engineered ECM-incorporated hydrogels      doi: 10.1007/s11517-022-02654-5
               for osteochondral tissue repair: a cell-free approach.  Adv
               Healthc Mater. 2025;14(4):e2402701.             67.  Naranda  J,  Bračič  M,  Vogrin  M,  Maver  U.  Recent
               doi: 10.1002/adhm.202402701                        advancements in 3d printing of polysaccharide hydrogels
                                                                  in cartilage tissue engineering.  Materials (Basel).
            57.  Sun T, Feng Z, He W, et al. Novel 3D-printing bilayer   2021;14(14):3977.
               GelMA-based hydrogel containing BP,β-TCP and exosomes      doi: 10.3390/ma14143977
               for  cartilage-bone  integrated repair.  Biofabrication.
               2023;16(1):015008.                              68.  Majumder N, Roy C, Doenges L, Martin I, Barbero A, Ghosh
               doi: 10.1088/1758-5090/ad04fe                      S. Covalent conjugation of small molecule inhibitors and
                                                                  growth  factors  to  a silk  fibroin-derived  bioink  to  develop
            58.  Eckstein KN, Hergert JE, Uzcategui AC, et al. Controlled
               mechanical property  gradients  within  a digital  light   phenotypically stable 3D bioprinted cartilage.  ACS Appl
               processing printed hydrogel-composite osteochondral   Mater Interfaces. 2024;16(8):9925-9943.
               scaffold. Ann Biomed Eng. 2024;52(8):2162-2177.     doi: 10.1021/acsami.3c18903
               doi: 10.1007/s10439-024-03516-x                 69.  Zhang W, Lian Q, Li D, et al. Cartilage repair and subchondral
            59.  Golebiowska A, Nukavarapu SP. Bio-inspired zonal-  bone migration using 3D printing osteochondral composites:
               structured matrices for bone-cartilage interface engineering.   a one-year-period study in rabbit trochlea. Biomed Res Int.
               Biofabrication. 2022;14(2):025016.                 2014;2014:746138.
               doi: 10.1088/1758-5090/ac52e1                      doi: 10.1155/2014/746138
            60.  Sun Y, Wu Q, Zhang Y, Dai K, Wei Y. 3D-bioprinted   70.  Golebiowska AA, Nukavarapu SP. Bio-inspired zonal-
               gradient-structured scaffold generates anisotropic cartilage   structured matrices for bone-cartilage interface engineering.
               with vascularization by pore-size-dependent activation   Biofabrication. 2022;14(2):025016.
               of HIF1α/FAK signaling axis.  Nanomedicine. 2021;      doi: 10.1088/1758-5090/ac5413
               37:102426.                                      71.  Jiang G, Li S, Yu K, et al. A 3D-printed PRP-GelMA
               doi: 10.1016/j.nano.2021.102426                    hydrogel promotes osteochondral regeneration through M2
            61.  Gu Y, Zou Y, Huang Y, et al. 3D-printed biomimetic scaffolds   macrophage polarization in a rabbit model. Acta Biomater.
               with precisely controlled and tunable structures guide cell   2021;128:150-162.
               migration and promote regeneration of osteochondral      doi: 10.1016/j.actbio.2021.04.010
               defect. Biofabrication. 2023;16(1):015003.      72.  Parisi C, Salvatore L, Veschini L, et al. Biomimetic gradient
               doi: 10.1088/1758-5090/ad0071                      scaffold  of  collagen-hydroxyapatite  for  osteochondral
            62.  Kilian D, Cometta S, Bernhardt A, et al. Core-shell   regeneration. J Tissue Eng.  2020;11:2041731419896068.
               bioprinting as a strategy to apply differentiation factors      doi: 10.1177/2041731419896068

            Volume 11 Issue 4 (2025)                        25                            doi: 10.36922/IJB025120100
   28   29   30   31   32   33   34   35   36   37   38