Page 33 - v11i4
P. 33
International Journal of Bioprinting 3D-printed scaffolds for osteochondral defect
52. Ding X, Gao J, Yu X, et al. 3D-printed porous scaffolds of in a spatially defined manner inside osteochondral tissue
hydrogels modified with TGF-β1 binding peptides to promote substitutes. Biofabrication. 2022;14(1):014108.
in vivo cartilage regeneration and animal gait restoration. doi: 10.1088/1758-5090/ac457b
ACS Appl Mater Interfaces. 2022;14(14):15982-15995.
doi: 10.1021/acsami.2c00761 63. Zhang Y, Li D, Liu Y, et al. 3D-bioprinted anisotropic
bicellular living hydrogels boost osteochondral regeneration
53. Li Q, Yu H, Zhao F, et al. 3D printing of microenvironment- via reconstruction of cartilage-bone interface. Innovation
specific bioinspired and exosome-reinforced hydrogel (Camb). 2024;5(1):100542.
scaffolds for efficient cartilage and subchondral bone doi: 10.1016/j.xinn.2023.100542
regeneration. Adv Sci (Weinh). 2023;10(26):e2303650.
doi: 10.1002/advs.202303650 64. Maherani M, Eslami H, Poursamar SA, Ansari M. A
modular approach to 3D-printed bilayer composite scaffolds
54. Cui X, Alcala-Orozco CR, Baer K, et al. 3D bioassembly for osteochondral tissue engineering. J Mater Sci Mater Med.
of cell-instructive chondrogenic and osteogenic hydrogel 2024;35(1):62.
microspheres containing allogeneic stem cells for hybrid doi: 10.1007/s10856-024-06824-9
biofabrication of osteochondral constructs. Biofabrication.
2022;14(3):034101. 65. O’Shea DG, Hodgkinson T, Curtin CM, O’Brien FJ. An
doi: 10.1088/1758-5090/ac61a3 injectable and 3D printable pro-chondrogenic hyaluronic
acid and collagen type II composite hydrogel for the repair of
55. Wei W, Liu W, Kang H, et al. A one-stone-two-birds strategy articular cartilage defects. Biofabrication. 2023;16(1):015007.
for osteochondral regeneration based on a 3D printable doi: 10.1088/1758-5090/ad047a
biomimetic scaffold with kartogenin biochemical stimuli
gradient. Adv Healthc Mater. 2023;12(15):e2300108. 66. Zineh BR, Roshangar L, Meshgi S, Shabgard M. 3D printing
doi: 10.1002/adhm.202300108 of alginate/thymoquinone/halloysite nanotube bio-scaffolds
for cartilage repairs: experimental and numerical study. Med
56. Coyle A, Chakraborty A, Huang J, Shamiya Y, Luo W, Biol Eng Comput. 2022;60(11):3069-3080.
Paul A. In vitro engineered ECM-incorporated hydrogels doi: 10.1007/s11517-022-02654-5
for osteochondral tissue repair: a cell-free approach. Adv
Healthc Mater. 2025;14(4):e2402701. 67. Naranda J, Bračič M, Vogrin M, Maver U. Recent
doi: 10.1002/adhm.202402701 advancements in 3d printing of polysaccharide hydrogels
in cartilage tissue engineering. Materials (Basel).
57. Sun T, Feng Z, He W, et al. Novel 3D-printing bilayer 2021;14(14):3977.
GelMA-based hydrogel containing BP,β-TCP and exosomes doi: 10.3390/ma14143977
for cartilage-bone integrated repair. Biofabrication.
2023;16(1):015008. 68. Majumder N, Roy C, Doenges L, Martin I, Barbero A, Ghosh
doi: 10.1088/1758-5090/ad04fe S. Covalent conjugation of small molecule inhibitors and
growth factors to a silk fibroin-derived bioink to develop
58. Eckstein KN, Hergert JE, Uzcategui AC, et al. Controlled
mechanical property gradients within a digital light phenotypically stable 3D bioprinted cartilage. ACS Appl
processing printed hydrogel-composite osteochondral Mater Interfaces. 2024;16(8):9925-9943.
scaffold. Ann Biomed Eng. 2024;52(8):2162-2177. doi: 10.1021/acsami.3c18903
doi: 10.1007/s10439-024-03516-x 69. Zhang W, Lian Q, Li D, et al. Cartilage repair and subchondral
59. Golebiowska A, Nukavarapu SP. Bio-inspired zonal- bone migration using 3D printing osteochondral composites:
structured matrices for bone-cartilage interface engineering. a one-year-period study in rabbit trochlea. Biomed Res Int.
Biofabrication. 2022;14(2):025016. 2014;2014:746138.
doi: 10.1088/1758-5090/ac52e1 doi: 10.1155/2014/746138
60. Sun Y, Wu Q, Zhang Y, Dai K, Wei Y. 3D-bioprinted 70. Golebiowska AA, Nukavarapu SP. Bio-inspired zonal-
gradient-structured scaffold generates anisotropic cartilage structured matrices for bone-cartilage interface engineering.
with vascularization by pore-size-dependent activation Biofabrication. 2022;14(2):025016.
of HIF1α/FAK signaling axis. Nanomedicine. 2021; doi: 10.1088/1758-5090/ac5413
37:102426. 71. Jiang G, Li S, Yu K, et al. A 3D-printed PRP-GelMA
doi: 10.1016/j.nano.2021.102426 hydrogel promotes osteochondral regeneration through M2
61. Gu Y, Zou Y, Huang Y, et al. 3D-printed biomimetic scaffolds macrophage polarization in a rabbit model. Acta Biomater.
with precisely controlled and tunable structures guide cell 2021;128:150-162.
migration and promote regeneration of osteochondral doi: 10.1016/j.actbio.2021.04.010
defect. Biofabrication. 2023;16(1):015003. 72. Parisi C, Salvatore L, Veschini L, et al. Biomimetic gradient
doi: 10.1088/1758-5090/ad0071 scaffold of collagen-hydroxyapatite for osteochondral
62. Kilian D, Cometta S, Bernhardt A, et al. Core-shell regeneration. J Tissue Eng. 2020;11:2041731419896068.
bioprinting as a strategy to apply differentiation factors doi: 10.1177/2041731419896068
Volume 11 Issue 4 (2025) 25 doi: 10.36922/IJB025120100