Page 38 - v11i4
P. 38

International Journal of Bioprinting                             3D-printed scaffolds for osteochondral defect




            162. Jia W, Liu Z, Sun L, et al. A multicrosslinked network   173. Qin C, Zhang H, Chen L, et al. Cell-laden scaffolds for
               composite hydrogel scaffold based on DLP photocuring   vascular-innervated bone regeneration. Adv Healthc Mater.
               printing for nasal cartilage repair.  Biotechnol Bioeng.   2023;12(13):e2201923.
               2024;121(9):2752-2766.                             doi: 10.1002/adhm.202201923
               doi: 10.1002/bit.28769
                                                               174. Liang X, Xie L, Zhang Q, et al. Gelatin methacryloyl-alginate
            163. Choe  R, Devoy  E,  Kuzemchak  B,  et  al.  Computational   core-shell microcapsules as efficient delivery platforms for
               investigation of interface printing patterns within 3D printed   prevascularized microtissues in endodontic regeneration.
               multilayered scaffolds for osteochondral tissue engineering.   Acta Biomater. 2022;144:242-257.
               Biofabrication.  2022;14(2):025015.                doi: 10.1016/j.actbio.2022.03.045
               doi: 10.1088/1758-5090/ac5220
                                                               175. Lu X, Dai S, Huang B, et al. Exosomes loaded a smart bilayer-
            164. Tamaddon M, Liu C. Enhancing biological and      hydrogel scaffold with ROS-scavenging and macrophage-
               biomechanical fixation of osteochondral scaffold: a grand   reprogramming properties for repairing cartilage defect.
               challenge. Adv Exp Med Biol. 2018;1059:255-298.    Bioact Mater. 2024;38:137-153.
               doi: 10.1007/978-3-319-76735-2_12                  doi: 10.1016/j.bioactmat.2024.04.017
            165. Tamaddon M, Czernuszka J. The need for hierarchical   176. Xu M, Su T, Jin X, et al. Inflammation-mediated matrix
               scaffolds in bone tissue engineering. Hard Tissue. 2013;2:37.  remodeling of extracellular matrix-mimicking biomaterials
               doi: 10.13172/2050-2303-2-4-773                    in tissue engineering and regenerative medicine.  Acta
                                                                  Biomater. 2022;151:106-117.
            166. Colosi C, Shin SR, Manoharan V, et al. Microfluidic
               bioprinting of heterogeneous 3D tissue constructs using   doi:  doi: 10.1016/j.actbio.2022.08.015
               low-viscosity bioink. Adv Mater. 2016;28(4):677-684.  177. Shu C, Qin C, Chen L, et al. Metal-organic framework
               doi: 10.1002/adma.201503310                        functionalized  bioceramic  scaffolds  with  antioxidative
                                                                  activity for enhanced osteochondral regeneration. Adv Sci
            167. García-Fernández L. Osteochondral angiogenesis and
               promoted vascularization: new therapeutic target. Adv Exp   (Weinh). 2023;10(13):e2206875.
               Med Biol. 2018;1059:315-330.                       doi: 10.1002/advs.202206875
               doi: 10.1007/978-3-319-76735-2_14               178. Del Rio D, Stewart AJ, Pellegrini N. A review of recent
                                                                  studies on malondialdehyde as toxic molecule and biological
            168. Sachlos E, Czernuszka JT. Making tissue engineering
               scaffolds work. Review: the application of solid freeform   marker of oxidative stress.  Nutr Metab Cardiovasc Dis.
               fabrication technology to the production of tissue   2005;15(4):316-328.
               engineering scaffolds.  Eur Cell Mater. 2003;5:29-39;      doi: 10.1016/j.numecd.2005.05.003
               discussion 39-40.                               179. Gu T, Zhang Z, Liu J, et al. Chlorogenic acid alleviates LPS-
               doi: 10.22203/ecm.v005a03                          induced inflammation and oxidative stress by modulating
                                                                  CD36/AMPK/PGC-1α in RAW264.7 macrophages.  Int J
            169. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G,
               Cohen S. Enhancing the vascularization of three-dimensional   Mol Sci.  2023;24(17):13516.
               porous alginate scaffolds by incorporating controlled release      doi: 10.3390/ijms241713516
               basic fibroblast growth factor microspheres. J Biomed Mater   180. Vapniarsky N, Simpson DL, Arzi B, et al. Histological,
               Res A.  2003;65(4):489-497.                        immunological, and genetic analysis of feline chronic
               doi: 10.1002/jbm.a.10542                           gingivostomatitis. Front Vet Sci. 2020;7:310.
                                                                  doi: 10.3389/fvets.2020.00310
            170. Li B, Wang H, Qiu G, Su X, Wu Z. Synergistic effects of
               vascular endothelial growth factor on bone morphogenetic   181. Mata R, Yao Y, Cao W, et al. The dynamic inflammatory
               proteins induced bone formation in vivo: influencing   tissue  microenvironment:  signality  and  disease
               factors and future research directions.  Biomed Res Int.   therapy by biomaterials.  Research (Wash D C). 2021;
               2016;2016:2869572.                                 2021:4189516.
               doi: 10.1155/2016/2869572                          doi: 10.34133/2021/4189516
            171. Centola M, Abbruzzese F, Scotti C, et al. Scaffold-based   182. Li S, Niu D, Fang H, et al. Tissue adhesive, ROS scavenging
               delivery of a clinically relevant anti-angiogenic drug   and injectable PRP-based ‘plasticine’ for promoting cartilage
               promotes the formation of in vivo stable cartilage. Tissue Eng   repair. Regen Biomater. 2024;11:rbad104.
               Part A. 2013;19(17-18):1960-1971.                  doi: 10.1093/rb/rbad104
               doi: 10.1089/ten.TEA.2012.0455
                                                               183. Liu D, Lu G, Shi B, et al. ROS-scavenging hydrogels synergize
            172. Firsching-Hauck A, Nickel P, Yahya C, et al. Angiostatic   with neural stem cells to enhance spinal cord injury repair
               effects of suramin analogs in vitro.  Anticancer Drugs.   via regulating microenvironment and facilitating nerve
               2000;11(2):69-77.                                  regeneration. Adv Healthc Mater. 2023;12(18):e2300123.
               doi: 10.1097/00001813-200002000-00002              doi: 10.1002/adhm.202300123



            Volume 11 Issue 4 (2025)                        30                            doi: 10.36922/IJB025120100
   33   34   35   36   37   38   39   40   41   42   43