Page 38 - v11i4
P. 38
International Journal of Bioprinting 3D-printed scaffolds for osteochondral defect
162. Jia W, Liu Z, Sun L, et al. A multicrosslinked network 173. Qin C, Zhang H, Chen L, et al. Cell-laden scaffolds for
composite hydrogel scaffold based on DLP photocuring vascular-innervated bone regeneration. Adv Healthc Mater.
printing for nasal cartilage repair. Biotechnol Bioeng. 2023;12(13):e2201923.
2024;121(9):2752-2766. doi: 10.1002/adhm.202201923
doi: 10.1002/bit.28769
174. Liang X, Xie L, Zhang Q, et al. Gelatin methacryloyl-alginate
163. Choe R, Devoy E, Kuzemchak B, et al. Computational core-shell microcapsules as efficient delivery platforms for
investigation of interface printing patterns within 3D printed prevascularized microtissues in endodontic regeneration.
multilayered scaffolds for osteochondral tissue engineering. Acta Biomater. 2022;144:242-257.
Biofabrication. 2022;14(2):025015. doi: 10.1016/j.actbio.2022.03.045
doi: 10.1088/1758-5090/ac5220
175. Lu X, Dai S, Huang B, et al. Exosomes loaded a smart bilayer-
164. Tamaddon M, Liu C. Enhancing biological and hydrogel scaffold with ROS-scavenging and macrophage-
biomechanical fixation of osteochondral scaffold: a grand reprogramming properties for repairing cartilage defect.
challenge. Adv Exp Med Biol. 2018;1059:255-298. Bioact Mater. 2024;38:137-153.
doi: 10.1007/978-3-319-76735-2_12 doi: 10.1016/j.bioactmat.2024.04.017
165. Tamaddon M, Czernuszka J. The need for hierarchical 176. Xu M, Su T, Jin X, et al. Inflammation-mediated matrix
scaffolds in bone tissue engineering. Hard Tissue. 2013;2:37. remodeling of extracellular matrix-mimicking biomaterials
doi: 10.13172/2050-2303-2-4-773 in tissue engineering and regenerative medicine. Acta
Biomater. 2022;151:106-117.
166. Colosi C, Shin SR, Manoharan V, et al. Microfluidic
bioprinting of heterogeneous 3D tissue constructs using doi: doi: 10.1016/j.actbio.2022.08.015
low-viscosity bioink. Adv Mater. 2016;28(4):677-684. 177. Shu C, Qin C, Chen L, et al. Metal-organic framework
doi: 10.1002/adma.201503310 functionalized bioceramic scaffolds with antioxidative
activity for enhanced osteochondral regeneration. Adv Sci
167. García-Fernández L. Osteochondral angiogenesis and
promoted vascularization: new therapeutic target. Adv Exp (Weinh). 2023;10(13):e2206875.
Med Biol. 2018;1059:315-330. doi: 10.1002/advs.202206875
doi: 10.1007/978-3-319-76735-2_14 178. Del Rio D, Stewart AJ, Pellegrini N. A review of recent
studies on malondialdehyde as toxic molecule and biological
168. Sachlos E, Czernuszka JT. Making tissue engineering
scaffolds work. Review: the application of solid freeform marker of oxidative stress. Nutr Metab Cardiovasc Dis.
fabrication technology to the production of tissue 2005;15(4):316-328.
engineering scaffolds. Eur Cell Mater. 2003;5:29-39; doi: 10.1016/j.numecd.2005.05.003
discussion 39-40. 179. Gu T, Zhang Z, Liu J, et al. Chlorogenic acid alleviates LPS-
doi: 10.22203/ecm.v005a03 induced inflammation and oxidative stress by modulating
CD36/AMPK/PGC-1α in RAW264.7 macrophages. Int J
169. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G,
Cohen S. Enhancing the vascularization of three-dimensional Mol Sci. 2023;24(17):13516.
porous alginate scaffolds by incorporating controlled release doi: 10.3390/ijms241713516
basic fibroblast growth factor microspheres. J Biomed Mater 180. Vapniarsky N, Simpson DL, Arzi B, et al. Histological,
Res A. 2003;65(4):489-497. immunological, and genetic analysis of feline chronic
doi: 10.1002/jbm.a.10542 gingivostomatitis. Front Vet Sci. 2020;7:310.
doi: 10.3389/fvets.2020.00310
170. Li B, Wang H, Qiu G, Su X, Wu Z. Synergistic effects of
vascular endothelial growth factor on bone morphogenetic 181. Mata R, Yao Y, Cao W, et al. The dynamic inflammatory
proteins induced bone formation in vivo: influencing tissue microenvironment: signality and disease
factors and future research directions. Biomed Res Int. therapy by biomaterials. Research (Wash D C). 2021;
2016;2016:2869572. 2021:4189516.
doi: 10.1155/2016/2869572 doi: 10.34133/2021/4189516
171. Centola M, Abbruzzese F, Scotti C, et al. Scaffold-based 182. Li S, Niu D, Fang H, et al. Tissue adhesive, ROS scavenging
delivery of a clinically relevant anti-angiogenic drug and injectable PRP-based ‘plasticine’ for promoting cartilage
promotes the formation of in vivo stable cartilage. Tissue Eng repair. Regen Biomater. 2024;11:rbad104.
Part A. 2013;19(17-18):1960-1971. doi: 10.1093/rb/rbad104
doi: 10.1089/ten.TEA.2012.0455
183. Liu D, Lu G, Shi B, et al. ROS-scavenging hydrogels synergize
172. Firsching-Hauck A, Nickel P, Yahya C, et al. Angiostatic with neural stem cells to enhance spinal cord injury repair
effects of suramin analogs in vitro. Anticancer Drugs. via regulating microenvironment and facilitating nerve
2000;11(2):69-77. regeneration. Adv Healthc Mater. 2023;12(18):e2300123.
doi: 10.1097/00001813-200002000-00002 doi: 10.1002/adhm.202300123
Volume 11 Issue 4 (2025) 30 doi: 10.36922/IJB025120100