Page 39 - v11i4
P. 39
International Journal of Bioprinting 3D-printed scaffolds for osteochondral defect
184. Sun H, Xu J, Wang Y, et al. Bone microenvironment doi: 10.1002/advs.202105727
regulative hydrogels with ROS scavenging and prolonged 191. Zhou T, Xiong H, Wang SQ, et al. An injectable hydrogel
oxygen-generating for enhancing bone repair. Bioact Mater. dotted with dexamethasone acetate-encapsulated reactive
2023;24:477-496.
doi: 10.1016/j.bioactmat.2022.12.021 oxygen species-scavenging micelles for combinatorial
therapy of osteoarthritis. Materials Today Nano.
185. Hu C, Huang R, Xia J, et al. A nanozyme-functionalized 2022;17:100164.
bilayer hydrogel scaffold for modulating the inflammatory doi: doi: 10.1016/j.mtnano.2021.100164
microenvironment to promote osteochondral regeneration.
J Nanobiotechnol. 2024;22(1):445. 192. Pan Y, Cao S, Terker AS, et al. Myeloid cyclooxygenase-2/
doi: 10.1186/s12951-024-02723-x prostaglandin E2/E-type prostanoid receptor 4 promotes
transcription factor MafB-dependent inflammatory
186. Zhao Z, Xia X, Liu J, et al. Cartilage-inspired self-assembly resolution in acute kidney injury. Kidney Int.
glycopeptide hydrogels for cartilage regeneration via ROS 2022;101(1):79-91.
scavenging. Bioact Mater. 2024;32:319-332. doi: 10.1016/j.kint.2021.09.033
doi: 10.1016/j.bioactmat.2023.10.013
193. da Silva Morais A, Oliveira JM, Reis RL. Small animal
187. Liu Z, Wang T, Zhang L, et al. Metal-phenolic networks- models. Adv Exp Med Biol. 2018;1059:423-439.
reinforced extracellular matrix scaffold for bone doi: 10.1007/978-3-319-76735-2_19
regeneration via combining radical-scavenging and photo-
responsive regulation of microenvironment. Adv Healthc 194. Liu TP, Ha P, Xiao CY, et al. Updates on mesenchymal stem
Mater. 2024;13(15):e2304158. cell therapies for articular cartilage regeneration in large
doi: 10.1002/adhm.202304158 animal models. Front Cell Dev Biol. 2022;10:982199.
doi: 10.3389/fcell.2022.982199
188. Zhao LL, Luo JJ, Cui J, et al. Tannic acid-modified
decellularized tendon scaffold with antioxidant and anti- 195. McIlwraith CW, Frisbie DD, Kawcak CE, Fuller CJ,
inflammatory activities for tendon regeneration. ACS Appl Hurtig M, Cruz A. The OARSI histopathology initiative
Mater Interfaces. 2024;16(13):15879-15892. - recommendations for histological assessments of
doi: 10.1021/acsami.3c19019 osteoarthritis in the horse. Osteoarthritis Cartilage.
2010;18(Suppl 3):S93-105.
189. Xue H, Zhang Z, Lin Z, et al. Enhanced tissue regeneration doi: 10.1016/j.joca.2010.05.031
through immunomodulation of angiogenesis and
osteogenesis with a multifaceted nanohybrid modified 196. McCoy AM. Animal models of osteoarthritis: comparisons
bioactive scaffold. Bioact Mater. 2022;18:552-568. and key considerations. Vet Pathol. 2015;52(5):803-818.
doi: 10.1016/j.bioactmat.2022.05.023 doi: 10.1177/0300985815588611
190. Deng C, Zhou Q, Zhang M, et al. Bioceramic Scaffolds 197. Proffen BL, McElfresh M, Fleming BC, Murray MM. A
with Antioxidative Functions for ROS scavenging comparative anatomical study of the human knee and six
and osteochondral regeneration. Adv Sci (Weinh). animal species. Knee. 2012;19(4):493-499.
2022;9(12):e2105727. doi: 10.1016/j.knee.2011.07.005
Volume 11 Issue 4 (2025) 31 doi: 10.36922/IJB025120100