Page 37 - v11i4
P. 37

International Journal of Bioprinting                             3D-printed scaffolds for osteochondral defect




            140. Li S, Liu C, Zhang Y, et al. Continuous 3D printing of   151. Gong L, Li J, Zhang J, et al. An interleukin-4-loaded bi-layer
               biomimetic beetle mandible structure with long bundles of   3D printed scaffold promotes osteochondral regeneration.
               aramid fiber composites. Biomimetics (Basel). 2023;8(3):283.  Acta Biomater. 2020;117:246-260.
               doi: 10.3390/biomimetics8030283                    doi: 10.1016/j.actbio.2020.09.039
            141. Yodmuang S, Guo H, Brial C, et al. Effect of interface   152. Senior JJ, Cooke ME, Grover LM, Smith AM. Fabrication
               mechanical discontinuities on scaffold-cartilage integration.   of complex hydrogel structures using suspended layer
               J Orthop Res. 2019;37(4):845-854.                  additive manufacturing (SLAM).  Adv Funct Mater.
               doi: 10.1002/jor.24238                             2019;29(49):1904845.
            142. Zhao R, Han F, Yu Q, et al. A multifunctional scaffold   doi:  doi: 10.1002/adfm.201904845
               that promotes the scaffold-tissue interface integration and   153. Uzcategui AC, Muralidharan A, Ferguson VL, Bryant SJ,
               rescues the ROS microenvironment for repair of annulus   McLeod RR. Understanding and improving mechanical
               fibrosus defects. Bioact Mater. 2024;41:257-270.   properties in 3D printed parts using a dual-cure acrylate-
               doi: 10.1016/j.bioactmat.2024.03.007               based resin for stereolithography.  Adv Eng Mater.
            143. Torres-Claramunt R, Martínez-Díaz S, Sánchez-Soler JF,    2018;20(12);1800876.
               et al. Fibronectin-coated polyurethane meniscal scaffolding      doi: 10.1002/adem.201800876
               supplemented with MSCs improves scaffold integration and   154. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials.
               proteoglycan production in a rabbit model. Knee Surg Sports   Chem Rev. 2020;120(19):10793-10833.
               Traumatol Arthrosc. 2023;31(11):5104-5110.         doi: 10.1021/acs.chemrev.0c00008
               doi: 10.1007/s00167-023-07562-1
                                                               155. Dufour A, Gallostra XB, O’Keeffe C, et al. Integrating
            144. Chung JY, Song M, Ha CW, Kim JA, Lee CH, Park    melt electrowriting and inkjet bioprinting for engineering
               YB. Comparison of articular cartilage repair with   structurally organized articular cartilage.  Biomaterials.
               different hydrogel-human umbilical cord blood-derived   2022;283:121405.
               mesenchymal stem cell composites in a rat model. Stem Cell      doi: 10.1016/j.biomaterials.2022.121405
               Res Ther. 2014;5(2):39.
               doi: 10.1186/scrt427                            156. Li Q, Xu S, Feng Q, et al. 3D printed silk-gelatin hydrogel
                                                                  scaffold with different porous structure and cell seeding
            145. Romito L, Ameer GA. Mechanical interlocking of
               engineered cartilage to an underlying polymeric substrate:   strategy for cartilage regeneration.  Bioact Mater.
               towards a biohybrid tissue equivalent.  Ann Biomed Eng.   2021;6(10):3396-3410.
               2006;34(5):737-747.                                doi: 10.1016/j.bioactmat.2021.03.013
               doi: 10.1007/s10439-006-9089-5                  157. Ahn SH, Lee J, Park SA, Kim WD. Three-dimensional bio-
            146. Scotti C, Wirz D, Wolf F, et al. Engineering human cell-  printing equipment technologies for tissue engineering
               based, functionally integrated osteochondral grafts by   and regenerative medicine.  Tissue Eng Regen Med.
               biological bonding of engineered cartilage tissues to bony   2016;13(6):663-676.
               scaffolds. Biomaterials. 2010;31(8):2252-2259.     doi: 10.1007/s13770-016-0148-1
               doi: 10.1016/j.biomaterials.2009.11.110         158. Della Bona A, Cantelli V, Britto VT, Collares KF,
            147. Ege D, Hasirci V. Is 3D printing promising for   Stansbury JW. 3D printing restorative materials using a
               osteochondral tissue regeneration?  ACS Appl Bio Mater.   stereolithographic technique: a systematic review.  Dent
               2023;6(4):1431-1444.                               Mater. 2021;37(2):336-350.
               doi: 10.1021/acsabm.3c00093                        doi: 10.1016/j.dental.2020.11.030
            148. Jammalamadaka U, Tappa K. Recent advances in   159. Jeong M, Radomski K, Lopez D, Liu JT, Lee JD, Lee SJ.
               biomaterials for 3d printing and tissue engineering. J Funct   Materials and applications of 3D printing technology in
               Biomater. 2018;9(1):22.                            dentistry: an overview. Dent J (Basel).  2023;12(1):1.
               doi: 10.3390/jfb9010022                            doi: 10.3390/dj12010001
            149. Steinmetz NJ, Aisenbrey EA, Westbrook KK, Qi HJ, Bryant SJ.   160. Wang Y, Ling C, Chen J, et al. 3D-printed composite scaffold
               Mechanical loading regulates human MSC differentiation in   with gradient structure and programmed biomolecule
               a multi-layer hydrogel for osteochondral tissue engineering.   delivery  to  guide  stem  cell  behavior  for  osteochondral
               Acta Biomater. 2015;21:142-153.                    regeneration. Biomater Adv. 2022;140:213067.
               doi: 10.1016/j.actbio.2015.04.015                  doi: 10.1016/j.bioadv.2022.213067
            150. Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M,   161. Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B,
               Lode A. 3D Bioprinting of osteochondral tissue substitutes   Soulairol I. Fused Deposition Modeling (FDM), the new
               -  in  vitro-chondrogenesis  in  multi-layered  mineralized   asset for the production of tailored medicines.  J Control
               constructs. Sci Rep. 2020;10(1):8277.              Release. 2021;330:821-841.
               doi: 10.1038/s41598-020-65050-9                    doi: 10.1016/j.jconrel.2020.10.056


            Volume 11 Issue 4 (2025)                        29                            doi: 10.36922/IJB025120100
   32   33   34   35   36   37   38   39   40   41   42