Page 37 - v11i4
P. 37
International Journal of Bioprinting 3D-printed scaffolds for osteochondral defect
140. Li S, Liu C, Zhang Y, et al. Continuous 3D printing of 151. Gong L, Li J, Zhang J, et al. An interleukin-4-loaded bi-layer
biomimetic beetle mandible structure with long bundles of 3D printed scaffold promotes osteochondral regeneration.
aramid fiber composites. Biomimetics (Basel). 2023;8(3):283. Acta Biomater. 2020;117:246-260.
doi: 10.3390/biomimetics8030283 doi: 10.1016/j.actbio.2020.09.039
141. Yodmuang S, Guo H, Brial C, et al. Effect of interface 152. Senior JJ, Cooke ME, Grover LM, Smith AM. Fabrication
mechanical discontinuities on scaffold-cartilage integration. of complex hydrogel structures using suspended layer
J Orthop Res. 2019;37(4):845-854. additive manufacturing (SLAM). Adv Funct Mater.
doi: 10.1002/jor.24238 2019;29(49):1904845.
142. Zhao R, Han F, Yu Q, et al. A multifunctional scaffold doi: doi: 10.1002/adfm.201904845
that promotes the scaffold-tissue interface integration and 153. Uzcategui AC, Muralidharan A, Ferguson VL, Bryant SJ,
rescues the ROS microenvironment for repair of annulus McLeod RR. Understanding and improving mechanical
fibrosus defects. Bioact Mater. 2024;41:257-270. properties in 3D printed parts using a dual-cure acrylate-
doi: 10.1016/j.bioactmat.2024.03.007 based resin for stereolithography. Adv Eng Mater.
143. Torres-Claramunt R, Martínez-Díaz S, Sánchez-Soler JF, 2018;20(12);1800876.
et al. Fibronectin-coated polyurethane meniscal scaffolding doi: 10.1002/adem.201800876
supplemented with MSCs improves scaffold integration and 154. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials.
proteoglycan production in a rabbit model. Knee Surg Sports Chem Rev. 2020;120(19):10793-10833.
Traumatol Arthrosc. 2023;31(11):5104-5110. doi: 10.1021/acs.chemrev.0c00008
doi: 10.1007/s00167-023-07562-1
155. Dufour A, Gallostra XB, O’Keeffe C, et al. Integrating
144. Chung JY, Song M, Ha CW, Kim JA, Lee CH, Park melt electrowriting and inkjet bioprinting for engineering
YB. Comparison of articular cartilage repair with structurally organized articular cartilage. Biomaterials.
different hydrogel-human umbilical cord blood-derived 2022;283:121405.
mesenchymal stem cell composites in a rat model. Stem Cell doi: 10.1016/j.biomaterials.2022.121405
Res Ther. 2014;5(2):39.
doi: 10.1186/scrt427 156. Li Q, Xu S, Feng Q, et al. 3D printed silk-gelatin hydrogel
scaffold with different porous structure and cell seeding
145. Romito L, Ameer GA. Mechanical interlocking of
engineered cartilage to an underlying polymeric substrate: strategy for cartilage regeneration. Bioact Mater.
towards a biohybrid tissue equivalent. Ann Biomed Eng. 2021;6(10):3396-3410.
2006;34(5):737-747. doi: 10.1016/j.bioactmat.2021.03.013
doi: 10.1007/s10439-006-9089-5 157. Ahn SH, Lee J, Park SA, Kim WD. Three-dimensional bio-
146. Scotti C, Wirz D, Wolf F, et al. Engineering human cell- printing equipment technologies for tissue engineering
based, functionally integrated osteochondral grafts by and regenerative medicine. Tissue Eng Regen Med.
biological bonding of engineered cartilage tissues to bony 2016;13(6):663-676.
scaffolds. Biomaterials. 2010;31(8):2252-2259. doi: 10.1007/s13770-016-0148-1
doi: 10.1016/j.biomaterials.2009.11.110 158. Della Bona A, Cantelli V, Britto VT, Collares KF,
147. Ege D, Hasirci V. Is 3D printing promising for Stansbury JW. 3D printing restorative materials using a
osteochondral tissue regeneration? ACS Appl Bio Mater. stereolithographic technique: a systematic review. Dent
2023;6(4):1431-1444. Mater. 2021;37(2):336-350.
doi: 10.1021/acsabm.3c00093 doi: 10.1016/j.dental.2020.11.030
148. Jammalamadaka U, Tappa K. Recent advances in 159. Jeong M, Radomski K, Lopez D, Liu JT, Lee JD, Lee SJ.
biomaterials for 3d printing and tissue engineering. J Funct Materials and applications of 3D printing technology in
Biomater. 2018;9(1):22. dentistry: an overview. Dent J (Basel). 2023;12(1):1.
doi: 10.3390/jfb9010022 doi: 10.3390/dj12010001
149. Steinmetz NJ, Aisenbrey EA, Westbrook KK, Qi HJ, Bryant SJ. 160. Wang Y, Ling C, Chen J, et al. 3D-printed composite scaffold
Mechanical loading regulates human MSC differentiation in with gradient structure and programmed biomolecule
a multi-layer hydrogel for osteochondral tissue engineering. delivery to guide stem cell behavior for osteochondral
Acta Biomater. 2015;21:142-153. regeneration. Biomater Adv. 2022;140:213067.
doi: 10.1016/j.actbio.2015.04.015 doi: 10.1016/j.bioadv.2022.213067
150. Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, 161. Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B,
Lode A. 3D Bioprinting of osteochondral tissue substitutes Soulairol I. Fused Deposition Modeling (FDM), the new
- in vitro-chondrogenesis in multi-layered mineralized asset for the production of tailored medicines. J Control
constructs. Sci Rep. 2020;10(1):8277. Release. 2021;330:821-841.
doi: 10.1038/s41598-020-65050-9 doi: 10.1016/j.jconrel.2020.10.056
Volume 11 Issue 4 (2025) 29 doi: 10.36922/IJB025120100