Page 36 - v11i4
P. 36

International Journal of Bioprinting                             3D-printed scaffolds for osteochondral defect




               doi: 10.2106/jbjs.20.01800                         deformation processing for pure Mg.  Materials (Basel).
                                                                  2022;15(15):5295.
            118. Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage
               - why does hyaline cartilage fail to repair? Adv Drug Deliv      doi: 10.3390/ma15155295
               Rev. 2019;146:289-305.                          130. Hu Q, Ecker M. Overview of MMP-13 as a promising
               doi: 10.1016/j.addr.2018.12.015                    target for the treatment of osteoarthritis.  Int J Mol Sci.
                                                                  2021;22(4):1742.
            119. Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous      doi: 10.3390/ijms22041742
               chondrocyte implantation compared with microfracture
               in the knee. A randomized trial.  J Bone Joint Surg Am.   131. Choe R, Devoy E, Jabari E, Packer JD, Fisher JP. Biomechanical
               2004;86(3):455-464.                                aspects of osteochondral regeneration: implications and
               doi: 10.2106/00004623-200403000-00001              strategies for three-dimensional bioprinting. Tissue Eng Part
                                                                  B Rev. 2022;28(4):766-788.
            120. Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling
               in mesenchymal stem cells of subchondral bone attenuates      doi: 10.1089/ten.TEB.2021.0101
               osteoarthritis. Nat Med. 2013;19(6):704-712.    132. Knudson W, Casey B, Nishida Y, Eger W, Kuettner KE,
               doi: 10.1038/nm.3143                               Knudson CB. Hyaluronan oligosaccharides perturb cartilage
                                                                  matrix homeostasis and induce chondrocytic chondrolysis.
            121. Lam J, Lu S, Kasper FK, Mikos AG. Strategies for controlled
               delivery of biologics for cartilage repair. Adv Drug Deliv Rev.    Arthritis Rheum. 2000;43(5):1165-1174.
               2015;84:123-134.                                   doi: 10.1002/1529-0131(200005)43:5<1165::Aid-anr27>
               doi:  doi: 10.1016/j.addr.2014.06.006              3.0.Co;2-h
                                                               133. Yildirim N, Amanzhanova A, Kulzhanova G, Mukasheva F,
            122. Möller T, Amoroso M, Hägg D, et al. In vivo chondrogenesis   Erisken C. Osteochondral interface: regenerative engineering
               in 3d bioprinted human cell-laden hydrogel constructs.   and challenges. ACS Biomater Sci Eng. 2023;9(3):1205-1223.
               Plast Reconstr Surg Glob Open. 2017;5(2):e1227.     doi: 10.1021/acsbiomaterials.2c01321
               doi: 10.1097/gox.0000000000001227
                                                               134. Kamaraj M, Roopavath UK, Giri PS, Ponnusamy NK, Rath
            123. Wu H,  Wang  X, Wang  G, et  al.  Advancing scaffold-  SN. Modulation of 3D printed calcium-deficient apatite
               assisted modality for in situ osteochondral regeneration:   constructs with varying mn concentrations for osteochondral
               a  shift  from  biodegradable  to  bioadaptable.  Adv Mater.   regeneration via endochondral differentiation.  ACS Appl
               2024;36(47):e2407040.
               doi: 10.1002/adma.202407040                        Mater Interfaces. 2022;14(20):23245-23259.
                                                                  doi: 10.1021/acsami.2c05110
            124. Karageorgiou V, Kaplan  D. Porosity of 3D  biomaterial
               scaffolds and osteogenesis.  Biomaterials.  2005;26(27):   135. Liuyun J, Lixin J, Chengdong X, Lijuan X, Ye L. Effect of
               5474-5491.                                         l-lysine-assisted surface grafting for nano-hydroxyapatite on
               doi: 10.1016/j.biomaterials.2005.02.002            mechanical properties and in vitro bioactivity of poly(lactic
                                                                  acid-co-glycolic acid). J Biomater Appl. 2016;30(6):750-758.
            125. Brauer DS. Bioactive glasses—structure and properties.      doi: 10.1177/0885328215584491
               Angew Chem Int Ed Engl. 2015;54(14):4160-4181.  136. Nedrelow DS, Townsend JM, Detamore MS. Osteochondral
               doi: 10.1002/anie.201405310
                                                                  regeneration with anatomical scaffold 3D-printing-design
            126. Bejarano J, Boccaccini AR, Covarrubias C, Palza H. Effect of   considerations for interface integration. J Biomed Mater Res
               Cu- and Zn-doped bioactive glasses on the in vitro bioactivity,   A. 2025;113(1):e37804.
               mechanical and degradation behavior of biodegradable      doi: 10.1002/jbm.a.37804
               PDLLA scaffolds. Materials (Basel). 2020;13(13):2908.  137. Brown WE, Huang BJ, Hu JC, Athanasiou KA. Engineering
               doi: 10.3390/ma13132908
                                                                  large, anatomically shaped osteochondral constructs
            127. Heiden M, Nauman E, Stanciu L. Bioresorbable Fe–Mn   with robust interfacial shear properties.  NPJ Regen Med.
               and Fe–Mn–HA materials for orthopedic implantation:   2021;6(1):42.
               enhancing degradation through porosity control.  Adv      doi: 10.1038/s41536-021-00152-0
               Healthc Mater. 2017;6(13):1700120.
               doi:  doi: 10.1002/adhm.201700120               138. Feng P, He J, Peng S, et al. Characterizations and
                                                                  interfacial  reinforcement  mechanisms  of  multicomponent
            128. Kim JA, Lim J, Naren R, Yun HS, Park EK. Effect of the   biopolymer based scaffold. Mater Sci Eng C Mater Biol Appl.
               biodegradation rate controlled by pore structures in   2019;100:809-825.
               magnesium phosphate ceramic scaffolds on bone tissue      doi: 10.1016/j.msec.2019.03.030
               regeneration in vivo. Acta Biomater.  2016;44:155-167.  139. Wang L, Zhao L, Detamore MS. Human umbilical cord
               doi: 10.1016/j.actbio.2016.08.039
                                                                  mesenchymal  stromal  cells  in  a  sandwich  approach  for
            129. Qu Z, Liu L, Deng Y, et al. Relationship between   osteochondral tissue engineering. J Tissue Eng Regen Med.
               biodegradation rate and grain size itself excluding other   2011;5(9):712-721.
               structural factors caused by alloying additions and      doi: 10.1002/term.370

            Volume 11 Issue 4 (2025)                        28                            doi: 10.36922/IJB025120100
   31   32   33   34   35   36   37   38   39   40   41