Page 36 - v11i4
P. 36
International Journal of Bioprinting 3D-printed scaffolds for osteochondral defect
doi: 10.2106/jbjs.20.01800 deformation processing for pure Mg. Materials (Basel).
2022;15(15):5295.
118. Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage
- why does hyaline cartilage fail to repair? Adv Drug Deliv doi: 10.3390/ma15155295
Rev. 2019;146:289-305. 130. Hu Q, Ecker M. Overview of MMP-13 as a promising
doi: 10.1016/j.addr.2018.12.015 target for the treatment of osteoarthritis. Int J Mol Sci.
2021;22(4):1742.
119. Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous doi: 10.3390/ijms22041742
chondrocyte implantation compared with microfracture
in the knee. A randomized trial. J Bone Joint Surg Am. 131. Choe R, Devoy E, Jabari E, Packer JD, Fisher JP. Biomechanical
2004;86(3):455-464. aspects of osteochondral regeneration: implications and
doi: 10.2106/00004623-200403000-00001 strategies for three-dimensional bioprinting. Tissue Eng Part
B Rev. 2022;28(4):766-788.
120. Zhen G, Wen C, Jia X, et al. Inhibition of TGF-β signaling
in mesenchymal stem cells of subchondral bone attenuates doi: 10.1089/ten.TEB.2021.0101
osteoarthritis. Nat Med. 2013;19(6):704-712. 132. Knudson W, Casey B, Nishida Y, Eger W, Kuettner KE,
doi: 10.1038/nm.3143 Knudson CB. Hyaluronan oligosaccharides perturb cartilage
matrix homeostasis and induce chondrocytic chondrolysis.
121. Lam J, Lu S, Kasper FK, Mikos AG. Strategies for controlled
delivery of biologics for cartilage repair. Adv Drug Deliv Rev. Arthritis Rheum. 2000;43(5):1165-1174.
2015;84:123-134. doi: 10.1002/1529-0131(200005)43:5<1165::Aid-anr27>
doi: doi: 10.1016/j.addr.2014.06.006 3.0.Co;2-h
133. Yildirim N, Amanzhanova A, Kulzhanova G, Mukasheva F,
122. Möller T, Amoroso M, Hägg D, et al. In vivo chondrogenesis Erisken C. Osteochondral interface: regenerative engineering
in 3d bioprinted human cell-laden hydrogel constructs. and challenges. ACS Biomater Sci Eng. 2023;9(3):1205-1223.
Plast Reconstr Surg Glob Open. 2017;5(2):e1227. doi: 10.1021/acsbiomaterials.2c01321
doi: 10.1097/gox.0000000000001227
134. Kamaraj M, Roopavath UK, Giri PS, Ponnusamy NK, Rath
123. Wu H, Wang X, Wang G, et al. Advancing scaffold- SN. Modulation of 3D printed calcium-deficient apatite
assisted modality for in situ osteochondral regeneration: constructs with varying mn concentrations for osteochondral
a shift from biodegradable to bioadaptable. Adv Mater. regeneration via endochondral differentiation. ACS Appl
2024;36(47):e2407040.
doi: 10.1002/adma.202407040 Mater Interfaces. 2022;14(20):23245-23259.
doi: 10.1021/acsami.2c05110
124. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial
scaffolds and osteogenesis. Biomaterials. 2005;26(27): 135. Liuyun J, Lixin J, Chengdong X, Lijuan X, Ye L. Effect of
5474-5491. l-lysine-assisted surface grafting for nano-hydroxyapatite on
doi: 10.1016/j.biomaterials.2005.02.002 mechanical properties and in vitro bioactivity of poly(lactic
acid-co-glycolic acid). J Biomater Appl. 2016;30(6):750-758.
125. Brauer DS. Bioactive glasses—structure and properties. doi: 10.1177/0885328215584491
Angew Chem Int Ed Engl. 2015;54(14):4160-4181. 136. Nedrelow DS, Townsend JM, Detamore MS. Osteochondral
doi: 10.1002/anie.201405310
regeneration with anatomical scaffold 3D-printing-design
126. Bejarano J, Boccaccini AR, Covarrubias C, Palza H. Effect of considerations for interface integration. J Biomed Mater Res
Cu- and Zn-doped bioactive glasses on the in vitro bioactivity, A. 2025;113(1):e37804.
mechanical and degradation behavior of biodegradable doi: 10.1002/jbm.a.37804
PDLLA scaffolds. Materials (Basel). 2020;13(13):2908. 137. Brown WE, Huang BJ, Hu JC, Athanasiou KA. Engineering
doi: 10.3390/ma13132908
large, anatomically shaped osteochondral constructs
127. Heiden M, Nauman E, Stanciu L. Bioresorbable Fe–Mn with robust interfacial shear properties. NPJ Regen Med.
and Fe–Mn–HA materials for orthopedic implantation: 2021;6(1):42.
enhancing degradation through porosity control. Adv doi: 10.1038/s41536-021-00152-0
Healthc Mater. 2017;6(13):1700120.
doi: doi: 10.1002/adhm.201700120 138. Feng P, He J, Peng S, et al. Characterizations and
interfacial reinforcement mechanisms of multicomponent
128. Kim JA, Lim J, Naren R, Yun HS, Park EK. Effect of the biopolymer based scaffold. Mater Sci Eng C Mater Biol Appl.
biodegradation rate controlled by pore structures in 2019;100:809-825.
magnesium phosphate ceramic scaffolds on bone tissue doi: 10.1016/j.msec.2019.03.030
regeneration in vivo. Acta Biomater. 2016;44:155-167. 139. Wang L, Zhao L, Detamore MS. Human umbilical cord
doi: 10.1016/j.actbio.2016.08.039
mesenchymal stromal cells in a sandwich approach for
129. Qu Z, Liu L, Deng Y, et al. Relationship between osteochondral tissue engineering. J Tissue Eng Regen Med.
biodegradation rate and grain size itself excluding other 2011;5(9):712-721.
structural factors caused by alloying additions and doi: 10.1002/term.370
Volume 11 Issue 4 (2025) 28 doi: 10.36922/IJB025120100