Page 35 - v11i4
P. 35
International Journal of Bioprinting 3D-printed scaffolds for osteochondral defect
doi: 10.1089/ten.TEB.2013.0100 marrow-derived mesenchymal stem cells. Stem Cell Res
Ther. 2016;7:20.
96. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering:
state of the art and future trends. Macromol Biosci. doi: 10.1186/s13287-016-0280-9
2004;4(8):743-765. 107. Lee JM, Im GI. SOX trio-co-transduced adipose stem
doi: 10.1002/mabi.200400026 cells in fibrin gel to enhance cartilage repair and delay
the progression of osteoarthritis in the rat. Biomaterials.
97. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized
extracellular matrix scaffolds: recent trends and emerging 2012;33(7):2016-2024.
strategies in tissue engineering. Bioact Mater. 2022;10:15-31. doi: 10.1016/j.biomaterials.2011.11.050
doi: 10.1016/j.bioactmat.2021.09.014 108. Vermeij EA, Broeren MG, Bennink MB, et al. Disease-
regulated local IL-10 gene therapy diminishes synovitis and
98. Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho
DW. Tailoring mechanical properties of decellularized cartilage proteoglycan depletion in experimental arthritis.
extracellular matrix bioink by vitamin B2-induced photo- Ann Rheum Dis. 2015;74(11):2084-2091.
crosslinking. Acta Biomater. 2016;33:88-95. doi: 10.1136/annrheumdis-2014-205223
doi: 10.1016/j.actbio.2016.01.013 109. Kay JD, Gouze E, Oligino TJ, et al. Intra-articular gene
delivery and expression of interleukin-1Ra mediated by
99. Zhang X, Liu Y, Luo C, et al. Crosslinker-free silk/
decellularized extracellular matrix porous bioink for 3D self-complementary adeno-associated virus. J Gene Med.
bioprinting-based cartilage tissue engineering. Mater Sci 2009;11(7):605-614.
Eng C Mater Biol Appl. 2021;118:111388. doi: 10.1002/jgm.1334
doi: 10.1016/j.msec.2020.111388 110. Bellavia D, Veronesi F, Carina V, et al. Gene therapy for
chondral and osteochondral regeneration: is the future now?
100. Joyce M, Hodgkinson T, Lemoine M, González-Vázquez
A, Kelly DJ, O’Brien FJ. Development of a 3D-printed Cell Mol Life Sci. 2018;75(4):649-667.
bioabsorbable composite scaffold with mechanical doi: 10.1007/s00018-017-2637-3
properties suitable for treating large, load-bearingarticular 111. Lu H, Wei J, Liu K, et al. Radical-scavenging and subchondral
cartilage defects. Eur Cell Mater. 2023;45:158-172. bone-regenerating nanomedicine for osteoarthritis
doi: 10.22203/eCM.v045a11 treatment. ACS Nano. 2023;17(6):6131-6146.
doi: 10.1021/acsnano.3c01789
101. Johnson K, Zhu S, Tremblay MS, et al. A stem cell-based
approach to cartilage repair. Science. 2012;336(6082):717-721. 112. Chen Y, Huang H, Zhong W, Li L, Lu Y, Si HB. miR-
doi: 10.1126/science.1215157 140-5p protects cartilage progenitor/stem cells from fate
changes in knee osteoarthritis. Int Immunopharmacol. 2023;
102. Stefani RM, Lee AJ, Tan AR, et al. Sustained low-dose
dexamethasone delivery via a PLGA microsphere-embedded 114:109576.
agarose implant for enhanced osteochondral repair. Acta doi: 10.1016/j.intimp.2022.109576
Biomaterialia. 2020;102:326-340. 113. Xing H, Zhang Z, Mao Q, et al. Injectable exosome-
doi: doi: 10.1016/j.actbio.2019.11.052 functionalized extracellular matrix hydrogel for metabolism
balance and pyroptosis regulation in intervertebral disc
103. Brito Barrera YA, Husteden C, Alherz J, Fuhrmann B, Wölk
C, Groth T. Extracellular matrix-inspired surface coatings degeneration. J Nanobiotechnol. 2021;19(1):264.
functionalized with dexamethasone-loaded liposomes doi: 10.1186/s12951-021-00991-5
to induce osteo- and chondrogenic differentiation of 114. Zhu W, Wang H, Feng B, et al. Self-healing hyaluronic
multipotent stem cells. Mater Sci Eng C Mater Biol Appl. acid-based hydrogel with miRNA140-5p loaded MON-PEI
2021;131:112516. nanoparticles for chondrocyte regeneration: Schiff base self-
doi: 10.1016/j.msec.2021.112516 assembly approach. Adv Sci (Weinh). 2025;12(1):e2406479.
doi: 10.1002/advs.202406479
104. Yan X, Chen YR, Song YF, et al. Scaffold-based gene
therapeutics for osteochondral tissue engineering. Front 115. Tuan RS, Chen AF, Klatt BA. Cartilage regeneration. J Am
Pharmacol. 2019;10:1534. Acad Orthop Surg. 2013;21(5):303-311.
doi: 10.3389/fphar.2019.01534 doi: 10.5435/jaaos-21-05-303
105. An C, Cheng Y, Yuan Q, Li J. IGF-1 and BMP-2 induces 116. Wang LT, Ting CH, Yen ML, et al. Human mesenchymal
differentiation of adipose-derived mesenchymal stem stem cells (MSCs) for treatment towards immune- and
cells into chondrocytes-like cells. Ann Biomed Eng. inflammation-mediated diseases: review of current clinical
2010;38(4):1647-1654. trials. J Biomed Sci. 2016;23(1):76.
doi: 10.1007/s10439-009-9892-x doi: 10.1186/s12929-016-0289-5
106. Tao K, Frisch J, Rey-Rico A, et al. Co-overexpression of 117. Bush CJ, Grant JA, Krych AJ, Bedi A. The role of mesenchymal
TGF-β and SOX9 via rAAV gene transfer modulates the stromal cells in the management of knee chondral defects.
metabolic and chondrogenic activities of human bone J Bone Joint Surg Am. 2022;104(3):284-292.
Volume 11 Issue 4 (2025) 27 doi: 10.36922/IJB025120100