Page 34 - v11i4
P. 34
International Journal of Bioprinting 3D-printed scaffolds for osteochondral defect
73. Sa MW, Nguyen BB, Moriarty RA, Kamalitdinov T, Fisher guide osteochondral defect healing in silico. Front Bioeng
JP, Kim JY. Fabrication and evaluation of 3D printed BCP Biotechnol. 2021;9:642217.
scaffolds reinforced with ZrO(2) for bone tissue applications. doi: 10.3389/fbioe.2021.642217
Biotechnol Bioeng. 2018;115(4):989-999. 85. Radhakrishnan J, Manigandan A, Chinnaswamy P,
doi: 10.1002/bit.26514
Subramanian A, Sethuraman S. Gradient nano-engineered
74. Liu L, Yu F, Chen L, Xia L, Wu C, Fang B. Lithium-containing in situ forming composite hydrogel for osteochondral
biomaterials stimulate cartilage repair through bone marrow regeneration. Biomaterials. 2018;162:82-98.
stromal cells-derived exosomal miR-455-3p and Histone H3 doi: 10.1016/j.biomaterials.2018.01.056
acetylation. Adv Healthc Mater. 2023;12(11):e2202390. 86. Pattnaik A, Sanket AS, Pradhan S, et al. Designing of gradient
doi: 10.1002/adhm.202202390
scaffolds and their applications in tissue regeneration.
75. Zheng J, Mao X, Ling J, Chen C, Zhang W. Role of Biomaterials. 2023;296:122078.
magnesium transporter subtype 1 (MagT1) in the osteogenic doi: doi: 10.1016/j.biomaterials.2023.122078
differentiation of rat bone marrow stem cells. Biol Trace 87. Zhang W, Chen J, Tao J, et al. The use of type 1 collagen
Elem Res. 2016;171(1):131-137. scaffold containing stromal cell-derived factor-1 to create a
doi: 10.1007/s12011-015-0459-4
matrix environment conducive to partial-thickness cartilage
76. Wang X, Gao L, Han Y, et al. Silicon-enhanced adipogenesis defects repair. Biomaterials. 2013;34(3):713-723.
and angiogenesis for vascularized adipose tissue engineering. doi: 10.1016/j.biomaterials.2012.10.027
Adv Sci (Weinh). 2018;5(11):1800776. 88. Hayashi K, Shimabukuro M, Kishida R, Tsuchiya A,
doi: 10.1002/advs.201800776
Ishikawa K. Honeycomb scaffolds capable of achieving
77. Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue barrier membrane-free guided bone regeneration. Mater
engineering. Acta Biomater. 2011;7(6):2355-2373. Adv. 2021;2(23):7638-7649.
doi: 10.1016/j.actbio.2011.03.016 doi: 10.1039/D1MA00698C
78. Morgan EF, Salisbury Palomares KT, Gleason RE, et al. 89. Zhao Y, Liang Y, Ding S, Zhang K, Mao HQ, Yang Y.
Correlations between local strains and tissue phenotypes Application of conductive PPy/SF composite scaffold
in an experimental model of skeletal healing. J Biomech. and electrical stimulation for neural tissue engineering.
2010;43(12):2418-2424. Biomaterials. 2020;255:120164.
doi: 10.1016/j.jbiomech.2010.04.019 doi: 10.1016/j.biomaterials.2020.120164
79. Claes L, Eckert-Hübner K, Augat P. The effect of mechanical 90. He J, Sun C, Gu Z, et al. Morphology, migration, and
stability on local vascularization and tissue differentiation in transcriptome analysis of schwann cell culture on butterfly
callus healing. J Orthop Res. 2002;20(5):1099-1105. wings with different surface architectures. ACS Nano.
doi: 10.1016/s0736-0266(02)00044-x 2018;12(10):9660-9668.
doi: 10.1021/acsnano.8b00552
80. Chen C, Xie J, Deng L, Yang L. Substrate stiffness together
with soluble factors affects chondrocyte mechanoresponses. 91. Zhang J, Wu Y, Thote T, Lee EH, Ge Z, Yang Z. The influence
ACS Appl Mater Interfaces. 2014;6(18):16106-16116. of scaffold microstructure on chondrogenic differentiation
doi: 10.1021/am504135b of mesenchymal stem cells. Biomed Mater. 2014;9(3):035011.
doi: 10.1088/1748-6041/9/3/035011
81. Yang Y, Feng Y, Qu R, et al. Synthesis of aligned porous
polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for 92. DeLise AM, Fischer L, Tuan RS. Cellular interactions and
osteoinduction in bone tissue engineering. Stem Cell Res signaling in cartilage development. Osteoarthritis Cartilage.
Ther. 2020;11(1):522. 2000;8(5):309-334.
doi: 10.1186/s13287-020-02024-8 doi: 10.1053/joca.1999.0306
82. Cao B, Li J, Wang X, et al. Mechanosensitive miR-99b 93. Li S, Tallia F, Mohammed AA, Stevens MM, Jones JR.
mediates the regulatory effect of matrix stiffness on bone Scaffold channel size influences stem cell differentiation
marrow mesenchymal stem cell fate both in vitro and in pathway in 3-D printed silica hybrid scaffolds for cartilage
vivo. APL Bioeng. 2023;7(1):016106. regeneration. Biomater Sci. 2020;8(16):4458-4466.
doi: 10.1063/5.0131125 doi: 10.1039/c9bm01829h
83. Lai Q, Li B, Chen L, Zhou Y, Bao H, Li H. Substrate 94. Zanetti NC, Solursh M. Induction of chondrogenesis in
stiffness regulates the proliferation and inflammation of limb mesenchymal cultures by disruption of the actin
chondrocytes and macrophages through exosomes. Acta cytoskeleton. J Cell Biol. 1984;99(1 Pt 1):115-123.
Biomater. 2025;192:77-89. doi: 10.1083/jcb.99.1.115
doi: 10.1016/j.actbio.2024.12.021
95. Vanden Berg-Foels WS. In situ tissue regeneration:
84. Tortorici M, Petersen A, Ehrhart K, Duda GN, Checa S. chemoattractants for endogenous stem cell recruitment.
Scaffold-dependent mechanical and architectural cues Tissue Eng Part B Rev. 2014;20(1):28-39.
Volume 11 Issue 4 (2025) 26 doi: 10.36922/IJB025120100