Page 34 - v11i4
P. 34

International Journal of Bioprinting                             3D-printed scaffolds for osteochondral defect




            73.  Sa MW, Nguyen BB, Moriarty RA, Kamalitdinov T, Fisher   guide osteochondral defect healing in silico.  Front Bioeng
               JP, Kim JY. Fabrication and evaluation of 3D printed BCP   Biotechnol. 2021;9:642217.
               scaffolds reinforced with ZrO(2) for bone tissue applications.      doi: 10.3389/fbioe.2021.642217
               Biotechnol Bioeng. 2018;115(4):989-999.         85.  Radhakrishnan J, Manigandan A, Chinnaswamy P,
               doi: 10.1002/bit.26514
                                                                  Subramanian A, Sethuraman S. Gradient nano-engineered
            74.  Liu L, Yu F, Chen L, Xia L, Wu C, Fang B. Lithium-containing   in situ forming composite hydrogel for osteochondral
               biomaterials stimulate cartilage repair through bone marrow   regeneration. Biomaterials. 2018;162:82-98.
               stromal cells-derived exosomal miR-455-3p and Histone H3      doi: 10.1016/j.biomaterials.2018.01.056
               acetylation. Adv Healthc Mater. 2023;12(11):e2202390.  86.  Pattnaik A, Sanket AS, Pradhan S, et al. Designing of gradient
               doi: 10.1002/adhm.202202390
                                                                  scaffolds  and  their  applications in  tissue regeneration.
            75.  Zheng J, Mao X, Ling J, Chen C, Zhang W. Role of   Biomaterials. 2023;296:122078.
               magnesium transporter subtype 1 (MagT1) in the osteogenic   doi:  doi: 10.1016/j.biomaterials.2023.122078
               differentiation of rat bone marrow stem cells.  Biol Trace   87.  Zhang W, Chen J, Tao J, et al. The use of type 1 collagen
               Elem Res. 2016;171(1):131-137.                     scaffold containing stromal cell-derived factor-1 to create a
               doi: 10.1007/s12011-015-0459-4
                                                                  matrix environment conducive to partial-thickness cartilage
            76.  Wang X, Gao L, Han Y, et al. Silicon-enhanced adipogenesis   defects repair. Biomaterials. 2013;34(3):713-723.
               and angiogenesis for vascularized adipose tissue engineering.      doi: 10.1016/j.biomaterials.2012.10.027
               Adv Sci (Weinh). 2018;5(11):1800776.            88.  Hayashi K, Shimabukuro M, Kishida R, Tsuchiya A,
               doi: 10.1002/advs.201800776
                                                                  Ishikawa K. Honeycomb scaffolds capable of achieving
            77.  Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue   barrier membrane-free guided bone regeneration.  Mater
               engineering. Acta Biomater. 2011;7(6):2355-2373.   Adv. 2021;2(23):7638-7649.
               doi: 10.1016/j.actbio.2011.03.016                  doi: 10.1039/D1MA00698C
            78.  Morgan EF, Salisbury Palomares KT, Gleason RE, et al.   89.  Zhao Y, Liang Y, Ding S, Zhang K, Mao HQ, Yang Y.
               Correlations between local strains and tissue phenotypes   Application of conductive PPy/SF composite scaffold
               in an experimental model of skeletal healing.  J Biomech.   and electrical stimulation for neural tissue engineering.
               2010;43(12):2418-2424.                             Biomaterials. 2020;255:120164.
               doi: 10.1016/j.jbiomech.2010.04.019                doi: 10.1016/j.biomaterials.2020.120164
            79.  Claes L, Eckert-Hübner K, Augat P. The effect of mechanical   90.  He J, Sun C, Gu Z, et al. Morphology, migration, and
               stability on local vascularization and tissue differentiation in   transcriptome analysis of schwann cell culture on butterfly
               callus healing. J Orthop Res. 2002;20(5):1099-1105.  wings with different surface architectures.  ACS Nano.
               doi: 10.1016/s0736-0266(02)00044-x                 2018;12(10):9660-9668.
                                                                  doi: 10.1021/acsnano.8b00552
            80.  Chen C, Xie J, Deng L, Yang L. Substrate stiffness together
               with soluble factors affects chondrocyte mechanoresponses.   91.  Zhang J, Wu Y, Thote T, Lee EH, Ge Z, Yang Z. The influence
               ACS Appl Mater Interfaces.  2014;6(18):16106-16116.  of scaffold microstructure on chondrogenic differentiation
               doi: 10.1021/am504135b                             of mesenchymal stem cells. Biomed Mater. 2014;9(3):035011.
                                                                  doi: 10.1088/1748-6041/9/3/035011
            81.  Yang Y, Feng Y, Qu R, et al. Synthesis of aligned porous
               polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for   92.  DeLise AM, Fischer L, Tuan RS. Cellular interactions and
               osteoinduction  in  bone tissue  engineering.  Stem Cell Res   signaling in cartilage development. Osteoarthritis Cartilage.
               Ther. 2020;11(1):522.                              2000;8(5):309-334.
               doi: 10.1186/s13287-020-02024-8                    doi: 10.1053/joca.1999.0306
            82.  Cao B, Li J, Wang X, et al. Mechanosensitive miR-99b   93.  Li S, Tallia F, Mohammed AA, Stevens MM, Jones JR.
               mediates the regulatory effect of matrix stiffness on bone   Scaffold channel size influences stem cell differentiation
               marrow mesenchymal stem cell fate both in vitro and in   pathway in 3-D printed silica hybrid scaffolds for cartilage
               vivo. APL Bioeng. 2023;7(1):016106.                regeneration. Biomater Sci.  2020;8(16):4458-4466.
               doi: 10.1063/5.0131125                             doi: 10.1039/c9bm01829h
            83.  Lai Q, Li B, Chen  L, Zhou Y, Bao  H, Li H.  Substrate   94.  Zanetti NC, Solursh M. Induction of chondrogenesis in
               stiffness regulates the proliferation and inflammation of   limb mesenchymal cultures by disruption of the actin
               chondrocytes and macrophages through exosomes.  Acta   cytoskeleton. J Cell Biol. 1984;99(1 Pt 1):115-123.
               Biomater. 2025;192:77-89.                          doi: 10.1083/jcb.99.1.115
               doi: 10.1016/j.actbio.2024.12.021
                                                               95.  Vanden Berg-Foels WS. In situ tissue regeneration:
            84.  Tortorici M, Petersen A, Ehrhart K, Duda GN, Checa S.   chemoattractants  for  endogenous  stem  cell  recruitment.
               Scaffold-dependent mechanical  and architectural  cues   Tissue Eng Part B Rev. 2014;20(1):28-39.

            Volume 11 Issue 4 (2025)                        26                            doi: 10.36922/IJB025120100
   29   30   31   32   33   34   35   36   37   38   39